Skip to main content

Physics for Image-Guided Brachytherapy

  • Chapter
  • First Online:
Gynecologic Radiation Therapy

Abstract

The integration of 3D imaging for gynecological brachytherapy treatment planning allows the use of dose and volume parameters to describe the dose distribution related to target volumes and normal tissue. The dose and volume specifications introduced by the GEC ESTRO serve as recommendations for recording and reporting, and can also be used for prospective treatment planning. However, these dose volume histogram parameters do not fully describe the spatial dose distribution. By increasing the target conformity and dose shaping, accuracy in the 3D reconstruction of applicator geometry and its relation to the anatomy is paramount. This form of brachytherapy can be performed as real image-guided radiotherapy, with adaptive treatment planning for each application or fraction. Uncertainties and variations must be studied and taken into account to arrive at high-quality treatments with increased target dose and lower dose to the organs at risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pötter R, Haie-Meder C, Van Limbergen E, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.

    Article  PubMed  Google Scholar 

  2. Kirisits C, Pötter R, Lang S, Dimopoulos J, Wachter-Gerstner N, Georg D. Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2005;62:901–11.

    Article  PubMed  Google Scholar 

  3. Lindegaard JC, Tanderup K, Nielsen SK, Haack S, Gelineck J. MRI-guided 3D optimization significantly improves DVH parameters of pulsed-dose-rate brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(3):756–64.

    Article  PubMed  Google Scholar 

  4. De Brabandere M, Mousa AG, Nulens A, Swinnen A, Van Limbergen E. Potential of dose optimisation in MRI-based PB brachytherapy of cervix carcinoma. Radiother Oncol. 2008;88:217–26.

    Article  PubMed  Google Scholar 

  5. Chargari C, Magné N, Dumas I, Messai T, Vicenzi L, Gillion N, et al. Physics Contributions and clinical outcome with 3D-MRI-based pulsed-dose-rate intracavitary brachytherapy in cervical cancer patients. Int J Radiat Oncol Biol Phys. 2009;74:133–9.

    Article  PubMed  Google Scholar 

  6. Wachter-Gerstner N, Wachter S, Reinstadler E, et al. Bladder and rectum dose defined from MRI based treatment planning for cervix cancer brachytherapy: comparison of dose-volume histograms for organ contours and organ wall, comparison with ICRU rectum and bladder reference point. Radiother Oncol. 2003;68:269–76.

    Article  PubMed  Google Scholar 

  7. Berger D, Dimopoulos J, Georg P, Georg D, Pötter R, Kirisits C. Uncertainties in assessment of the vaginal dose for intracavitary brachytherapy of cervical cancer using a tandem-ring applicator. Int J Radiat Oncol Biol Phys. 2007;67:1451–9.

    Article  PubMed  Google Scholar 

  8. Kubo HD, Glasgow GP, Pethel TD, Thomadsen BR, Williamson JF. High dose-rate brachytherapy treatment delivery: report of the AAPM Radiation Therapy Committee Task Group No. 59. Med Phys. 1998;25(4):375–403.

    Article  PubMed  CAS  Google Scholar 

  9. Nath R, Anderson LL, Meli JA, Olch AJ, Stitt JA, Williamson JF. Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine. Med Phys. 1997;24(10):1557–98.

    Article  PubMed  CAS  Google Scholar 

  10. Hellebust TP, Tanderup K, Bergstrand ES, Knutsen BH, Røislien J, Olsen DR. Reconstruction of a ring applicator using CT imaging: impact of reconstruction method and applicator orientation. Phys Med Biol. 2007;52:4893–904.

    Article  PubMed  Google Scholar 

  11. Haack S, Nielsen SK, Lindegaard JC, Gelineck J, Tanderup K. Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiother Oncol. 2009;91:187–93.

    Article  PubMed  Google Scholar 

  12. Perez-Calatayud J, Kuipers F, Ballester F, et al. Exclusive MRI-based tandem and colpostats reconstruction in gynaecological brachytherapy treatment planning. Radiother Oncol. 2009;91:181–6.

    Article  PubMed  Google Scholar 

  13. Chajon E, Dumas I, Touleimat M, et al. Inverse planning approach for 3-D MRI-based pulse-dose rate intracavitary brachytherapy in cervix cancer. Int J Radiat Oncol Phys. 2007;68:955–61.

    Google Scholar 

  14. Petric P, Hudej R, Rogelj P, Logar HBZ. 3D T2-weighted fast recovery fast spin echo sequence MRI for target contouring in cervix cancer brachytherapy. Brachytherapy. 2008;7:109–10.

    Article  Google Scholar 

  15. Gehl, HB, Frahm C, Passive visualization of needles in interventional magnetic resonance imaging, Debatin JF, Adam G Editors Springer Verlag 1997

    Google Scholar 

  16. Berger D, Dimopoulos J, Potter R, and Kirisits C, Direct reconstruction of the Vienna applicator on MRI images. Radiother Oncol, 2009. 93(2): p. 347–51.

    Article  PubMed  Google Scholar 

  17. Mai J, Erickson B, Rownd J, Gillin M. Comparison of four different dose specification methods for high-dose-rate intracavitary radiation for treatment of cervical cancer. Int J Radiat Oncol Biol Phys. 2001;51:1131–41.

    Article  PubMed  CAS  Google Scholar 

  18. Jürgenliemk-Schulz IM, Lang S, Tanderup K, de Leeuw A, Kirisits C, Lindegaard J, Petric P, Hudej R, Pötter R; Gyn GEC ESTRO network. Variation of treatment planning parameters (D90 HR CTV, D2cc for OAR) for cervical cancer tandem ring brachytherapy in a multicentre setting: comparison of standard planning and 3D image guided optimisation based on a joint protocol for dose-volume constraints. Radiother Oncol, 2010;94:339–45.

    Google Scholar 

  19. Erickson B. The sculpted pear: an unfinished brachytherapy tale. Brachytherapy. 2003;2:189–99.

    Article  PubMed  Google Scholar 

  20. Kirisits C, Lang S, Dimopoulos J, Berger D, Georg D, Pötter R. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;65:624–30.

    Article  PubMed  Google Scholar 

  21. Lahanas M, Baltas D, Zamboglou N. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy. Phys Med Biol. 2003;48(3):399–415.

    Article  PubMed  CAS  Google Scholar 

  22. Pouliot J, Lessard É, and Hsu I-C. Advanced 3D planning. In: Brachytherapy physics. 2nd ed. M.P. Publishing; 2005. p. 393–413.

    Google Scholar 

  23. Kirisits C, Siebert FA, Baltas D, et al. Accuracy of volume and DVH parameters determined with different brachytherapy treatment planning systems. Radiother Oncol. 2007;84:290–7.

    Article  PubMed  Google Scholar 

  24. Lang S, Nulens A, Briot E, et al. Intercomparison of treatment concepts for MR image assisted brachytherapy of cervical carcinoma based on GYN GEC-ESTRO recommendations. Radiother Oncol. 2006;78:185–93.

    Article  PubMed  Google Scholar 

  25. Viswanathan AN, Dimopoulos J, Kirisits C, Berger D, Pötter R. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys. 2007;68:491–8.

    Article  PubMed  Google Scholar 

  26. Petric P, Dimopoulos J, Kirisits C, Berger D, Hudej R, Potter R. Inter- and intraobserver variation in HR CTV contouring: Intercomparison of transverse and paratransverse image orientation in 3D-MRI assisted cervix cancer brachytherapy. Radiother Oncol. 2008;89:164–71.

    Article  PubMed  Google Scholar 

  27. Dimopoulos JC, Vos VD, Berger D, Petric P, Dumas I, Kirisits C, et al. Inter-observer comparison of target delineation for MRI-assisted cervical cancer brachytherapy: application of the GYN GEC-ESTRO recommendations. Radiother Oncol. 2009;91:166–72.

    Article  PubMed  Google Scholar 

  28. Saarnak AE, Boersma M, van Bunningen BN, Wolterink R, Steggerda MJ. Inter-observer variation in delineation of bladder and rectum contours for brachytherapy of cervical cancer. Radiother Oncol. 2000;56:37–42.

    Article  PubMed  CAS  Google Scholar 

  29. Tanderup K, Hellebust TP, Lang S, Granfeldt J, Pötter R, Lindegaard JC, et al. Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer. Radiother Oncol. 2008;89:156–63.

    Article  PubMed  Google Scholar 

  30. Tanderup K, Christensen JJ, Granfeldt J, Lindegaard JC. Geometric stability of intracavitary pulsed dose rate brachytherapy monitored by in vivo rectal dosimetry. Radiother Oncol. 2006;79:87–93.

    Article  PubMed  Google Scholar 

  31. de Leeuw A, Lotz HT, Moerland MA, Teersteeg RHA, Jürgenliemk-Schultz IM. Displacements and resulting dose effects of tandem ovoid applicators during PB brachytherapy for cervical cancer. Brachytherapy. 2008;7(2):94–5.

    Article  Google Scholar 

  32. Lang S, Georg P, Kirisits C, Dimopoulos J, Kuzucan A, Georg D, et al. Uncertainty analysis for 3D image based cervix cancer brachytherapy by repeated MRI examinations: DVH-variations between two HDR fractions within one applicator insertion. Radiother Oncol. 2006;81 Suppl 1:S79.

    Google Scholar 

  33. Kirisits C, Lang S, Dimopoulos J, Oechs K, Georg D, Pötter R. Uncertainties when using only one MRI-based treatment plan for subsequent high-dose-rate tandem and ring applications in brachytherapy of cervix cancer. Radiother Oncol. 2006;81:269–75.

    Article  PubMed  Google Scholar 

  34. Hellebust TP, Dale E, Skjonsberg A, Olsen DR. Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations. Radiother Oncol. 2001;60:273–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kirisits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Kirisits, C., Tanderup, K., Hellebust, T.P., Cormack, R. (2011). Physics for Image-Guided Brachytherapy. In: Viswanathan, A., Kirisits, C., Erickson, B., Pötter, R. (eds) Gynecologic Radiation Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68958-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68958-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68954-6

  • Online ISBN: 978-3-540-68958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics