Skip to main content

Radiobiological Aspects of Brachytherapy in the Era of 3-Dimensional Imaging

  • Chapter
  • First Online:
Gynecologic Radiation Therapy

Abstract

Radiobiological principles are increasingly well understood for external beam radiotherapy (EBRT) for a variety of tumor histologies and the associated normal tissue effects. Application of this knowledge in the daily use of brachytherapy is much more challenging, although equally important. Brachytherapy was initially developed empirically with dose being determined predominantly by clinical effect. In the modern era, radiobiological modeling is used to predict the biological effect of varying dose prescriptions. The challenges involved in applying radiobiological principles within brachytherapy have been emphasized by the move from low dose rate (LDR) treatment to fractionated high dose rate (HDR) and pulsed brachytherapy (PB) treatment. This chapter examines basic radiobiological principles and their application to 3D conformal gynecologic brachytherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stitt JA, Fowler JF, Thomadsen BR, et al. High dose rate intracavitary brachytherapy for carcinoma of the cervix: the Madison system: I. Clinical and radiobiological consideration. Int J Radiat Oncol Biol Phys. 1992;24:335–48.

    Article  PubMed  CAS  Google Scholar 

  2. Brenner DJ, Huang Y, Hall EJ. Fractionated high dose rate versus low dose rate regimens for intracavitary brachytherapy of the cervix:equivalent regimens for combined brachytherapy and external irradiation. Int J Radiat Oncol Biol Phys. 1991;21:1415–23.

    Article  PubMed  CAS  Google Scholar 

  3. Eifel PJ. High-dose-rate brachytherapy for carcinoma of the cervix: high tech or high risk? Int J Radiat Oncol Biol Phys. 1992;24:383–6.

    Article  PubMed  CAS  Google Scholar 

  4. ICRU 38. Dose and volume specifications for reporting intracavitary therapy in gynecology. Bethesda: International Commission on Radiation Units and Measurements; 1985. pp. 1–23.

    Google Scholar 

  5. Dale RG, Fowler JF. Radiation repair mechanisms. In: Dale RG, Jones B, editors. Radiobiological modelling in radiation oncology. London: British Institute of Radiology; 2007.

    Google Scholar 

  6. Fu KK, Ling CC, Nath R, et al. Radiobiology of brachytherapy. In: Interstitial brachytherapy: Physical, Biological and Clinical Considerations (Interstitial Collaborative Working Group). Eds Anderson LL and the Interstitial Collaborative Working Group. New York: Raven Press Ltd; 1990.

    Google Scholar 

  7. Dale RG, Jones B. The clinical radiobiology of brachytherapy. Br J Radiol. 1998;71:465–83.

    PubMed  CAS  Google Scholar 

  8. Mason KA, Thames HD, Ochran TG, et al. Comparison of continuous and pulsed low dose rate brachytherapy: biological equivalence in vivo. Int J Radiat Oncol Biol Phys. 1994;28:667–71.

    Article  PubMed  CAS  Google Scholar 

  9. Armour EP, White JR, Armin A, et al. Pulsed low dose rate brachytherapy in a rat model: dependence of late rectal injury on radiation pulse size. Int J Radiat Oncol Biol Phys. 1997;38:825–34.

    Article  PubMed  CAS  Google Scholar 

  10. Visser AG, van den Aardweg GJ, Levendag PC. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments. Int J Radiat Oncol Biol Phys. 1996;34:497–505.

    Article  PubMed  CAS  Google Scholar 

  11. Fowler JF, van Limbergen EFM. Biological effect of pulsed dose rate brachytherapy with stepping sources if short half-times of repair are present in tissues. Int J Radiat Oncol Biol Phys. 1997;37:877–83.

    Article  PubMed  CAS  Google Scholar 

  12. Dale RG. The application of the linear quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol. 1985;58:515–28.

    Article  PubMed  CAS  Google Scholar 

  13. Joiner MC, van der Kogel AJ. The linear quadratic approach to fractionation and calculation of isoeffect relationships. In: Steel GG, editor. Basic clinical radiobiology. 3rd ed. London: Hodder Arnold; 1997. p. 106–22.

    Google Scholar 

  14. Bentzen SM, Joiner MC. The linear quadratic approach in clinical practice. In: Joiner MC, van der Kogel A, editors. Basic clinical radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 120–34.

    Chapter  Google Scholar 

  15. Pop LA, van den Broek JF, Visser AG, et al. Constraints in the use of repair half times and mathematical modelling for the clinical application of HDR and PDR treatment schedules as an alternative for LDR brachytherapy. Radiother Oncol. 1996;38:153–62.

    Article  PubMed  CAS  Google Scholar 

  16. Bentzen SM, Saunders MI, Dische S. Repair halftimes estimated from observations of treatment-related morbidity after CHART or conventional radiotherapy in head and neck cancer. Radiother Oncol. 1999;53:219–26.

    Article  PubMed  CAS  Google Scholar 

  17. Steel G. Basic Clinical Radiobiology, vol. 1. 3rd ed. London: Arnold; 2002.

    Google Scholar 

  18. Potter R, Haie-Meder C, Van Limbergen E, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.

    Article  PubMed  Google Scholar 

  19. Noda SE, Ohno T, Kato S, et al. Late rectal complications evaluated by computed tomography-based dose calculations in patients with cervical carcinoma undergoing high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys. 2007;69:118–24.

    Article  PubMed  Google Scholar 

  20. Clark BG, Souhami L, Roman TN, et al. The prediction of late rectal complications in patients treated with high dose rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 1997;38:989–93.

    Article  PubMed  CAS  Google Scholar 

  21. Yoshimura R, Hayashi K, Ayukawa F, et al. Radiotherapy doses at special reference points correlate with the outcome of cervical cancer therapy. Brachytherapy. 2008;7:260–6.

    Article  PubMed  Google Scholar 

  22. Guerrero M, Li XA. Extending the linear–quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol. 2004;49:4825–35.

    Article  PubMed  CAS  Google Scholar 

  23. Fowler JF. Is repair of DNA strand break damage from ionizing radiation second-order rather than first-order? A simpler explanation of apparently multiexponential repair. Radiat Res. 1999;152:124–36.

    Article  PubMed  CAS  Google Scholar 

  24. Millar WT, Canney PA. Derivation and application of equations describing the effects of fractionated protracted irradiation, based on multiple and incomplete repair processes. Part 1L: Derivation of equations. Int J Radiobiol. 1993;64:275–91.

    Article  CAS  Google Scholar 

  25. Orton C. High dose rate brachytherapy may be radiobiologically superior to low dose rate due to slow repair of late responding normal tissue cells. Int J Radiat Oncol Biol Phys. 2001;49:183–9.

    Article  PubMed  CAS  Google Scholar 

  26. Denham JW, Hamilton CS, Simpson SA, O’Brien MY, Ostwald PM, Kron T, et al. Acute reaction parameters for human oropharyngeal mucosa. Radiother Oncol. 1995;35:129–37.

    Article  PubMed  CAS  Google Scholar 

  27. Roberts SA, Hendry JH, Swindell R, et al. Compensation for changes in dose-rate in radical low-dose-rate brachytherapy: a radiobiological analysis of a randomised clinical trial. Radiother Oncol. 2004;70:63–74.

    Article  PubMed  Google Scholar 

  28. Bentzen SM, Ruifrok AC, Thames HD. Repair capacity and kinetics for human mucosa and epithelial tumors in the head and neck: clinical data on the effect of changing the time interval between multiple fractions per day in radiotherapy. Radiother Oncol. 1996;38:89–101.

    Article  PubMed  CAS  Google Scholar 

  29. Bentzen SM. Design of clinical trials in radiation oncology: saving lives not grays. In: JB DR, editor. Radiobiological modelling in radiation oncology. London: British Institute of Radiology; 2007. p. 196–211.

    Google Scholar 

  30. Jones B, Dale RG. The potential for mathematical modelling in the assessment of the radiation dose equivalent of cytotoxic chemotherapy given concomitantly with radiotherapy. Br J Radiol. 2005;78:939–44.

    Article  PubMed  CAS  Google Scholar 

  31. Jones B, Dale RG, Gaya AM. Linear quadratic modelling of increased late normal-tissue effects in special clinical situations. Int J Radiat Oncol Biol Phys. 2006;64:948–53.

    Article  PubMed  Google Scholar 

  32. Meredith WJ. Radium dosage: the Manchester system. Baltimore: Williams & Wilkins; 1949.

    Google Scholar 

  33. Hoskin PJ, Rembowska A. Dosimetry rules for brachytherapy using high dose rate remote afterloading implants. Clin Onc. 1998;10:226–30.

    Article  CAS  Google Scholar 

  34. Mai J, Erickson B, Rownd J, et al. Comparison of four different dose specification methods for high dose rate intracavitary radiation for treatment of cervical cancer. Int J Radiat Oncol Biol Phys. 2001;51:1131–41.

    Article  PubMed  CAS  Google Scholar 

  35. Lee SW, Suh CO, Chung EJ, et al. Dose optimization of fractionated external radiation and high dose rate intracavitary brachytherapy for FIGO stage IB uterine cervical carcinoma. Int J Radiat Oncol Biol Phys. 2002;52:1338–44.

    Article  PubMed  Google Scholar 

  36. Foroudi F, Bull CA, Gebski V. Radiation therapy for cervix carcinoma: benefits of individualized dosimetry. Clin Onc. 2002;14:43–9.

    Article  CAS  Google Scholar 

  37. Pierquin B, Dutreix A, Paine CH, et al. The Paris system in interstitial radiation therapy. Acta Radiol Oncol Radiat Phys Biol. 1978;17:33–48.

    Article  PubMed  CAS  Google Scholar 

  38. Teshima T, Inoue T, Ikeda H, et al. High dose rate and low dose rate intracavitary therapy for carcinoma of the uterine cervix. Final results of Osaka University Hospital. Cancer. 1993;72:2409–14.

    Article  PubMed  CAS  Google Scholar 

  39. Patel FD, Sharma SC, Negi PS, et al. Low dose rate vs. high dose rate brachytherapy in the treatment of carcinoma of the uterine cervix: a clinical trial. Int J Radiat Oncol Biol Phys. 1993;28:335–41.

    Article  Google Scholar 

  40. Lertsanguansinchai P, Lertbutsayanukul C, Shotelersuk K, et al. Phase III randomized trial comparing LDR and HDR brachytherapy in treatment of cervical carcinoma. Int J Radiat Oncol Biol Phys. 2004;59:1424–31.

    Article  PubMed  Google Scholar 

  41. Hareyama M, Sakata K, Oouchi A, et al. High dose rate versus low dose rate intracavitary therapy for carcinoma of the uterine cervix. Cancer. 2002;94:117–24.

    Article  PubMed  Google Scholar 

  42. Stewart AJ, Viswanathan AN. Current controversies in high-dose-rate versus low-dose-rate brachytherapy for cervical cancer. Cancer. 2006;107:908–15.

    Article  PubMed  Google Scholar 

  43. Shrivastava S, Dinshaw K, Mahanshetty U, et al. Comparing low-dose-rate and high-dose-rate intracavitary brachytherapy in carcinoma cervix: results from a randomized controlled study. Int J Radiat Oncol Biol Phys. 2006;66:S42.

    Article  Google Scholar 

  44. Viani GA, Manta GB, Stefano EJ, et al. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy-a meta-analysis of clinical trials. J Exp Clin Cancer Res. 2009;28:47.

    Article  PubMed  Google Scholar 

  45. Stewart AJ, Jones B. Radiobiological concepts for brachytherapy. In: Devlin P, editor. Brachytherapy: applications and techniques. 1st ed. Baltimore: Lippincott, Williams & Wilkins; 2006.

    Google Scholar 

  46. Ling CC, Spiro IJ, Mitchell J, et al. The variation of OER with dose rate. Int J Radiat Oncol Biol Phys. 1985;11:1367–73.

    Article  PubMed  CAS  Google Scholar 

  47. Dale RG. The use of small fraction numbers in high dose-rate gynaecological afterloading: some radiobiological considerations. Br J Radiol. 1990;63:290–4.

    Article  PubMed  CAS  Google Scholar 

  48. Dale RG, Coles IP, Deehan C, et al. Calculation of integrated biological response in brachytherapy. Int J Radiat Oncol Biol Phys. 1997;38:633–42.

    Article  PubMed  CAS  Google Scholar 

  49. Haie-Meder C, Kramar A, Lambin P, et al. Analysis of complications in a prospective randomized trial comparing two brachytherapy low dose rates in cervical carcinoma. Int J Radiat Oncol Biol Phys. 1994;29:953–60.

    Article  PubMed  CAS  Google Scholar 

  50. Lambin P, Gerbaulet A, Kramar A, et al. Phase III trial comparing two low dose rates in brachytherapy of cervix carcinoma: report at 2 years. Int J Radiat Oncol Biol Phys. 1993;25:405–12.

    Article  PubMed  CAS  Google Scholar 

  51. Au SP, Grigsby PW. The irradiation tolerance dose of the proximal vagina. Radiother Oncol. 2003;67:77–85.

    Article  PubMed  Google Scholar 

  52. Kirisits C, Lang S, Dimopolous J, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;65:624–30.

    Article  PubMed  Google Scholar 

  53. van den Berg AP, van Geel CAJF, van Hooije CMC, et al. Tumor hypoxia – a confounding or exploitable factor in interstitial brachytherapy? Effects of tissue trauma in an experimental rat tumor model. Int J Radiat Oncol Biol Phys. 2000;48:233–40.

    Article  PubMed  Google Scholar 

  54. Lindegaard JC, Tanderup K, Nielsen SK, et al. MRI-guided 3D optimization significantly improves DVH parameters of pulsed-dose-rate brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:756–64.

    Article  PubMed  Google Scholar 

  55. Wang KL, Yang YC, Chao KS, et al. Correlation of traditional point a with anatomic location of uterine artery and ureter in cancer of the uterine cervix. Int J Radiat Oncol Biol Phys. 2007;69:498–503.

    Article  PubMed  Google Scholar 

  56. Yaparpalvi R, Mutyala S, Gorla GR, et al. Point vs. volumetric bladder and rectal doses in combined intracavitary-interstitial high-dose-rate brachytherapy: correlation and comparison with published Vienna applicator data. Brachytherapy. 2008;7:336–42.

    Article  PubMed  Google Scholar 

  57. Kim HJ, Kim S, Ha SW, et al. Are doses to ICRU reference points valuable for predicting late rectal and bladder morbidity after definitive radiotherapy in uterine cervix cancer? Tumori. 2008;94:327–32.

    PubMed  Google Scholar 

  58. Pelloski CE, Palmer M, Chronowski GM, et al. Comparison between CT-based volumetric calculations and ICRU reference-point estimates of radiation doses delivered to bladder and rectum during intracavitary radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2005;62:131–7.

    Article  PubMed  Google Scholar 

  59. Haie-Meder C, Potter R, Van Limbergen E, et al. Recommendations from the gynaecological (GYN) GEC ESTRO working group: concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.

    Article  PubMed  Google Scholar 

  60. Paley PJ, Goff BA, Minudri R, et al. The prognostic significance of radiation dose and residual tumor in the treatment of barrel-shaped endophytic cervical carcinoma. Gyn Onc. 2000;76:373–9.

    Article  CAS  Google Scholar 

  61. Eifel PJ, Thoms Jr WW, Smith TL, et al. The relationship between brachytherapy dose and outcome in patients with bulky endocervical tumors treated with radiation alone. Int J Radiat Oncol Biol Phys. 1994;28:113–8.

    Article  PubMed  CAS  Google Scholar 

  62. Sorbe B, Straumits A, Karlsson L. Intravaginal high-dose-rate brachytherapy for stage I endometrial cancer: a randomized study of two dose-per-fraction levels. Int J Radiat Oncol Biol Phys. 2005;62:1385–9.

    Article  PubMed  Google Scholar 

  63. Chatani M, Matayoshi Y, Masaki N, et al. A prospective randomized study concerning the point A dose in high dose rate intracavitary therapy for carcinoma of the uterine cervix. The final results. Strahlenther Onkol. 1994;170:636–42.

    PubMed  CAS  Google Scholar 

  64. Okkan S, Atkovar G, Sahinler I, et al. Results and complications of high dose rate and low dose rate brachytherapy in carcinoma of the cervix: Cerrahpasa experience. Radiother Oncol. 2003;67:97–105.

    Article  PubMed  Google Scholar 

  65. Chen SW, Liang JA, Yang SN, et al. The adverse effect of treatment prolongation in cervical cancer by high dose rate intracavitary brachytherapy. Radiother Oncol. 2003;67:69–76.

    Article  PubMed  Google Scholar 

  66. Nag S, Erickson B, Thomadsen B, et al. The American Brachytherapy Society recommendations for high dose rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2000;48:201–11.

    Article  PubMed  CAS  Google Scholar 

  67. Hama Y, Uematsu M, Nagata I, et al. Carcinoma of the uterine cervix: twice versus once-weekly high dose rate brachytherapy. Radiology. 2001;219:207–12.

    PubMed  CAS  Google Scholar 

  68. Pötter R, Dimopoulos J, Georg P, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83:148–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra J. Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Stewart, A.J., Bentzen, S.M. (2011). Radiobiological Aspects of Brachytherapy in the Era of 3-Dimensional Imaging. In: Viswanathan, A., Kirisits, C., Erickson, B., Pötter, R. (eds) Gynecologic Radiation Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68958-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68958-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68954-6

  • Online ISBN: 978-3-540-68958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics