Skip to main content

Large-Scale Transient Sensitivity Analysis of a Radiation-Damaged Bipolar Junction Transistor via Automatic Differentiation

  • Conference paper
Advances in Automatic Differentiation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 64))

Summary

Automatic differentiation (AD) is useful in transient sensitivity analysis of a computational simulation of a bipolar junction transistor subject to radiation damage. We used forward-mode AD, implemented in a new Trilinos package called Sacado, to compute analytic derivatives for implicit time integration and forward sensitivity analysis. Sacado addresses element-based simulation codes written in C++ and works well with forward sensitivity analysis as implemented in the Trilinos time-integration package Rythmos. The forward sensitivity calculation is significantly more efficient and robust than finite differencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trilinos packages Sacado, Rythmos, NOX, Thyra, Stratimikos, AztecOO and Ifpack are available at the Trilinos web site http://trilinos.sandia.gov

  2. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming. Addison-Wesley, Boston (2005)

    Google Scholar 

  3. Aubert, P., Di Césaré, N., Pironneau, O.: Automatic differentiation in C++ using expression templates and application to a flow control problem. Computing and Visualisation in Sciences 3, 197–208 (2001)

    Article  MATH  Google Scholar 

  4. Bartlett, R.A., Gay, D.M., Phipps, E.T.: Automatic differentiation of C++ codes for large-scale scientific computing. In: V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, J. Dongarra (eds.) Computational Science – ICCS 2006, Lecture Notes in Computer Science, vol. 3994, pp. 525–532. Springer, Heidelberg (2006)

    Google Scholar 

  5. Feehery, W.F., Tolsma, J.E., Barton, P.I.: Efficient sensitivity analysis of large-scale differential-algebraic systems. Appl. Numer. Math. 25(1), 41–54 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gay, D.M.: Semiautomatic differentiation for efficient gradient computations. In: H.M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.) Automatic Differentiation: Applications, Theory, and Tools, Lecture Notes in Computational Science and Engineering. Springer (2005)

    Google Scholar 

  7. Hennigan, G.L., Hoekstra, R.J., Castro, J.P., Fixel, D.A., Shadid, J.N.: Simulation of neutron radiation damage in silicon semiconductor devices. Tech. Rep. SAND2007-7157, Sandia National Laboratories (2007)

    Google Scholar 

  8. Heroux, M., Bartlett, R., Howle, V., Hoekstra, R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J., Williams, A., Stanley, K.: An overview of the Trilinos package. ACM Trans. Math. Softw. 31(3) (2005)

    Google Scholar 

  9. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Cicumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal order interpolation. Computer Methods in Applied Mechanics and Engineering 59, 85–99 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations. Computational Methods Applied Mechanics and Engineering 73, 173–189 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley & Sons (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phipps, E.T., Bartlett, R.A., Gay, D.M., Hoekstra, R.J. (2008). Large-Scale Transient Sensitivity Analysis of a Radiation-Damaged Bipolar Junction Transistor via Automatic Differentiation. In: Bischof, C.H., Bücker, H.M., Hovland, P., Naumann, U., Utke, J. (eds) Advances in Automatic Differentiation. Lecture Notes in Computational Science and Engineering, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68942-3_31

Download citation

Publish with us

Policies and ethics