Skip to main content

The Combined Schrödinger-Maxwell Problem in the Electronic/Electromagnetic Characterization of Nanodevices

  • Conference paper
Time Domain Methods in Electrodynamics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 121))

  • 1477 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Li, Z. Yu, S. F. Yen, W. C. Tang, and P. J. Burke, “Carbon nanotube transistor operation at 2.6 ghz,” Nano Lett., vol. 4, pp. 753–756, 2004.

    Article  Google Scholar 

  2. J. P. Clifford, D. L. John, L. C. Castro, and D. L. Pulfrey, “Electrostatics of partially gated carbon nanotube fets,” IEEE Trans. Nanotechnol., vol. 3, pp. 281–286, Jun. 2004.

    Google Scholar 

  3. P. J. Burke, “An rf circuit model for cnts,” IEEE Trans. Nanotechnol., vol. 2, pp. 55–58, Mar. 2002.

    Google Scholar 

  4. P. Kim and C. M. Lieber, “Nanotube nanotweezers,” Science, vol. 286, pp. 2148–2150, 1999.

    Google Scholar 

  5. G. Pirio, P. Legagneux, D. Pribat, M. C. K. B. K. Teo, G. A. J. Amaratunga, and W. I. Milne, “Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode,” Nanotechnology, vol. 13, pp. 1–4, Feb. 2002.

    Google Scholar 

  6. G. W. Hanson, “Current on an infinitely-long carbon nanotube antenna excited by a gap generator,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 76–81, Jan. 2006.

    MathSciNet  Google Scholar 

  7. H. Sanada, M. Suzuki, and N. Nagai, “Analysis of resonant tunneling using the equivalent transmission-line model,” IEEE Trans. Quantum Electonics, vol. 33, pp. 731–741, May 1997.

    Article  Google Scholar 

  8. A. V. Maslov and C. Z. Ning, “Modal gain in a semiconductor nanowirelaser with anisotropic bandstructure,” IEEE J. Quantum Electron., vol. 40, no. 10, pp. 1389–1397, Oct. 2004.

    Article  Google Scholar 

  9. T. Rozzi and D. Mencarelli, “Application of algebraic invariants to full-wave simulators - rigorous analysis of the optical properties of nanowires,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 797–803, Feb. 2006.

    Google Scholar 

  10. T. Rozzi, D. Mencarelli, A. D. Donato, and M. Farina, “Self-consistent analysis of carbon nanotube (cnt) transistors: state-of-the-art and critical discussion,” In Proceedings of the 7th International Conference on RF MEMs and RF Microsystems, Orvieto, Italy, June 2006, pp. 59–61.

    Google Scholar 

  11. D. Mencarelli, T. Rozzi, L. Maccari, A. D. Donato, and M. Farina, “Standard electromagnetic simulators for the combined electromagnetic/quantum-mechanical analysis of carbon nanotubes,” Phys. Rev. B, vol. 75, 085402, 2007.

    Article  Google Scholar 

  12. M. Pourfath, H. Kosina, B. H. Cheong, W. J. Park, and S. Selberherr, “The effect of device geometry on the static and dynamic response of carbon nanotube field effect transistors,” In Proceedings of 5th Conference on Nanotechnology, 2005.

    Google Scholar 

  13. P. L. M. Euen, M. S. Fuhrer, and H. Park, “Single-walled carbon nanotube electronics,” IEEE Trans on Nanotechnol., vol. 1, no. 1, pp. 78–85, Mar. 2002.

    Article  Google Scholar 

  14. A. Taflove, Computational Electrodynamics–the Finite-difference Time-domain Method. Boston, MA: Artech House, 1995.

    MATH  Google Scholar 

  15. P. B. Johns, “A symmetrical condensed node for the tlm method,” IEEE Trans. Microw. Theory Tech., vol. 35, no. 4, pp. 370–377, Apr. 1987.

    Google Scholar 

  16. H. Jin and R. Vahldieck, “Direct derivation of tlm symmetrical condensednode and hybrid symmetrical condensed node from maxwell’s equations using centered differencing and averaging,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2554–2562, Dec. 1994.

    Google Scholar 

  17. T. M. B. V. Trenkic and C. Christopoulus, “Optimization of tlm schemes based on the general symmetrical condensed node,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 3, pp. 457–465, Mar. 1997.

    Google Scholar 

  18. M. Krumpholz and P. Russer, “A field theoretical derivation of tlm,” IEEE Trans. Microw. Theory Tech., vol. 12, no. 9, pp. 1660–1668, Sept. 1994.

    Google Scholar 

  19. W. Hoefer, “The transmission-line-matrix method-theory and applications,” IEEE Trans. Microw. Theory Tech., vol. 35, no. 4, pp. 882–893, Oct. 1985.

    Google Scholar 

  20. L. Pierantoni, A. Massaro, and T. Rozzi, “Accurate modeling of te/tm propagation and losses of integrated optical waveguide,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 1856–1862, June 2005.

    Article  Google Scholar 

  21. P. Enders and D. D. Cogan, “Tlm routines for the paraxial wave equation and the time-dependent schroedinger equation,” In Proceed. of Micr. Symp. Digest, 1998 MTT Intern. Symp., Aug. 1995, pp. 137–140.

    Google Scholar 

  22. A. Soriano, E. A. Navarro, J. A. Portì, and V. Such, “Analysis of the finite difference time domain technique to solve the schroedinger equation for quantum devices,” J. Appl. Phys., vol. 95, no. 12, pp. 811–829, June 2004.

    Article  Google Scholar 

  23. J. H. Davis, The Physics of Low-dimensional Semiconductor. Cambridge Univercity Press, Cambridge, MA 1995.

    Google Scholar 

  24. P. Russer, W. J. R. Hoefer, and P. P. M. So, “Modeling of nonlinear active regions in tlm,” IEEE Microw. and Guided Lett., vol. 1, no. 1, pp. 10–13, June 1991.

    Google Scholar 

  25. L. Cascio and W. J. R. Hoefer, “Modification of the 3d-tlm scattering matrix to model nonlinear devices in graded and heterogeneous regions,” In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, June 1998, pp. 897–900.

    Google Scholar 

  26. M. Mangin-Brinet, J. Carbonell, and C. Gignoux, “Exact boundary conditions at finite distance for the time-dependent schrödinger equation,” Phys. Rev. A, vol. 57, no. 5, pp. 3245–3255, May 1998.

    Google Scholar 

  27. M. E. A. Arnoldy and I. Sofronov, “Discrete transparent boundary conditions for the schrödinger equation: fast calculation, approximation, and stability,” Math. Comput. Modell., vol. 1, no. 3, pp. 501–556, Dec 2003.

    Google Scholar 

  28. A. Zisowsky and M. Ehrhardt, “Discrete transparent boundary conditions for parabolic systems,” Comm. Math. Sci., vol. 1, no. 3–4, pp. 294–309, March 2005.

    Google Scholar 

  29. P. J. S. P. D. L. John, L. C. Castro, and D. L. Pulfrey, “A schrödinger-poisson solver for modelling carbon nanotube fets,” Nanotechnology, vol. 3, pp. 65–68, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pierantoni, L., Mencarelli, D., Rozzi, T. (2008). The Combined Schrödinger-Maxwell Problem in the Electronic/Electromagnetic Characterization of Nanodevices. In: Russer, P., Siart, U. (eds) Time Domain Methods in Electrodynamics. Springer Proceedings in Physics, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68768-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68768-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68766-5

  • Online ISBN: 978-3-540-68768-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics