Skip to main content

Volcanic ash transport and dispersion models

  • Chapter
  • First Online:
Monitoring Volcanoes in the North Pacific

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

A volcanic eruption is an amazing event. The associated earthquakes, lava flows, and ash clouds are both intriguing yet potentially dangerous features that can cause enormous changes to the landscape, damage to infrastructure, and even loss of life. Obviously, the ability to predict the occurrence and dynamics of an eruption is both desirable and necessary for public safety. Despite many advances in the understanding of what leads to volcanic eruptions, predicting the commencement of an eruption remains difficult. Once an eruption has begun, predicting its behavior is equally if not more important in order to minimize the potential financial and human costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • AMS (2000). Glossary of Meteorology, Second Edition, American Meteorological Society, Boston, MA, 850 pp.

    Google Scholar 

  • Armienti, P.; Macedonio, G.; Pareschi, M.T. (1988). Air traffic risk evaluation in volcanic ash clouds, International Journal of Modeling and Simulation, 8(1), 29–32.

    Google Scholar 

  • Batchelor, G. (1949). Diffusion in a field of homogeneous turbulence, Australian Journal of Scientific Research, A2, 437–450.

    Google Scholar 

  • Batchelor, G. (1950). The application of the similarity theory of turbulence to atmospheric diffusion, Q. J. Royal Meteorological Society, 76, 133–146.

    Google Scholar 

  • Bird, R.; Steward, W.; Lightfoot E. (1960). Transport Phenomena, John Wiley & Sons, New York.

    Google Scholar 

  • Blong, R.J. (1984). Volcanic Hazards: A Sourcebook on the Effects of Eruptions, Academic Press, Sydney.

    Google Scholar 

  • Bonadonna, C.; Phillips, J.C. (2003). Sedimentation from strong volcanic plumes, J. Geophys. Res., 108(B7), 2340, doi: 10.1029/2002JB002034.

  • Boybeyi, Z. (2000). Mesoscale Atmospheric Dispersion, WIT Press, Southampton, U.K., 448 pp.

    Google Scholar 

  • Bursik, M. (2001). Effect of wind in the rise of volcanic plumes, Geophys. Res. Lett., 28(18), 3621–3624, doi: 10.1029/2001GL013393.

  • Bursik, M.; Jones, M.; Carn, S.; Dean, K.; Patra, A.; Pavolonis, M.; Pitman, E.B.; Singh, T.; Singla, P.; Webley, P. et al. (2012). Estimation and propagation of volcanic source parameter uncertainty in an ash transport and dispersal model: Application to the Eyjafjallajokull plume of 14–16 April 2010, Bull. Volcanol., 74(10), 2321–2338.

    Google Scholar 

  • Byrne, M.A.; Laing, A.G.; Conner C. (2007). Predicting tephra dispersal with a mesoscale atmospheric model and a particle fall model: Application to Cerro Negro Volcano, J. Appl. Meteorol. Climatol., 46, 121–135.

    Google Scholar 

  • Carey, S.N.; Sigurdsson, H. (1982). Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. J. Geophys. Res., 87(B8), 7061–7072.

    Google Scholar 

  • Casadevall, T.J. (1993). Volcanic hazards and aviation safety: Lessons of the past decade, FAA Aviation Safety J., 2, 1–11.

    Google Scholar 

  • Casadevall, T.J. (1994). The 1989–1990 eruption of Redoubt Volcano Alaska: Impacts on aircraft operations, J. Volcanol. Geothermal Res., 62(30), 1–316.

    Google Scholar 

  • Casadevall, T.J.; Krohn, D. (1995). Effects of the 1992 Crater Peak Eruptions on Airports and Aviation Operations in the United States and Canada, USGS Bulletin 2139, U.S. Geological Survey, Reston, VA, pp. 205–220.

    Google Scholar 

  • Casadevall, T.J.; Meeker, G.P.; Przedpelski, Z.J. (1991). Volcanic ash injested by jet engines, First Int. Symp. on Volcanic Ash and Aviation Safety, p. 15.

    Google Scholar 

  • Chapra, S.C.; Canale, R. (2001). Numerical Methods for Engineers, McGraw-Hill, New York.

    Google Scholar 

  • Conner, C.; Conner, L.J. (2006). Inversion is the key to dispersion: Understanding eruption dynamics by inverting tephra fallout, in H.M. Mader, S.G. Coles, C.B. Conner, and L.J. Conner (Eds.), Statistics in Volcanology, Geological Society, London, pp. 231242.

    Google Scholar 

  • Cornell, W.; Carey, S.; Sigurdsson, H. (1983). Computer simulation of transport and deposition of the Campanian Y-5 ash, J. Volcanol. Geothermal Res., 17, 89–109.

    Google Scholar 

  • D’Amours, R. (1998). Modeling the ETEX plume dispersion with the Canadian Emergency Response Model, Atmospheric Environment, 32, 4335–4341.

    Google Scholar 

  • Dean, K.; Dehn, J.; McNutt, S.; Neal, C.; Moore, R.; Schneider, D. (2002). Satellite imagery proves essential for monitoring erupting Aleutian volcano, EOS, Trans. Am. Geophys. Union, 83(22), 241, 246–247.

    Google Scholar 

  • Dean, K.G.; Dehn, J.; Papp, K.R.; Smith, S.; Izbekov, P.; Peterson, R.; Kearney, C.; Steffke, A. (2004). Integrated satellite observations of the 2001 eruption of Mt. Cleveland, Alaska, J. Volcanol. Geothermal Res., 135, 51–73.

    Google Scholar 

  • Draxler, R.R. (1999). HYSPLIT_4 User’s Guide, Tech Memo ERL ARL-230, June, National Oceanic and Atmospheric Administration, Camp Springs, MD, 35 pp.

    Google Scholar 

  • Draxler, R.R. (2003). Evaluation of an ensemble dispersion calculation, J. Appl. Meteorol., 42, 308–317.

    Google Scholar 

  • Draxler, R.R.; Hess, G.D. (1997). Description of the HYSPLIT_4 Modeling System, Tech Memo ERL ARL-224, December, National Oceanic and Atmospheric Administration, Camp Springs, MD, 24 pp.

    Google Scholar 

  • Draxler, R.R.; Hess, G.D. (1998). An overview of the Hysplit_4 modeling system for trajectories, dispersion and deposition, Australian Meteorological Magazine, 47, 295–308.

    Google Scholar 

  • Draxler, R.R.; Gillette, D.A.; Kirkpatrick, J.S.; Heller, J. (2001). Estimating PM10 air concentrations from dust storm in Iraq, Kuwait, and Saudi Arabia, Atmospheric Environment, 35, 4315–4330.

    Google Scholar 

  • Dunn, M.G.; Baran A.J.; Miatech J. (1996). Operation of gas turbine engines in volcanic ash clouds, J. of Engineering for Gas Turbines and Power, 118, 724.

    Google Scholar 

  • Eichelberger, J.C.; Keith, T.E.C.; Miller, T.P.; Nye, C.J. (1995). The 1992 eruptions of Crater Peak Vent, Mount Spurr volcano, Alaska: Chronology and summary, in T.E.C. Keith (Ed.), The 1992 Eruptions of Crater Peak Vent, Mount Spurr volcano, Alaska, USGS Bulletin B 2139, U.S. Geological Survey, Reston, VA, pp. 1–18.

    Google Scholar 

  • GVP (1994). Kliuchevskoi Volcano Activity Monthly Report (Bull. Global Volc. Network Vol. 19 No. 09), Global Volcanism Program), Smithsonian National Museum of Natural History, Washington, D.C.

    Google Scholar 

  • Hadley, D.; Hufford, G.L.; Simpson, J.J. (2004). Resuspension of relic volcanic ash and dust from Katmai: Still an aviation hazard, Weather and Forecasting, 19(5), 829.

    Google Scholar 

  • Holasek, R.E.; Self, S. (1995). GOES weather satellite observations and measurements of the May 18, 1980, Mount St. Helens eruption, J. Geophys. Res., 100(B5), 8469–8487.

    Google Scholar 

  • Hurst, A.W.; Turner, R. (1999). Performance of the program ASHFALL for forecasting ASHFALL during the 1995 and 1996 eruptions of Ruapehu volcano, N.Z. J. Geology and Geophysics, 42, 615–622.

    Google Scholar 

  • Keith, T.E.C. (Ed.) (1995). The 1992 Eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska, USGS Bulletin B 2139, U.S. Geological Survey, Reston, VA, 220 pp.

    Google Scholar 

  • Kim, J.; Dunn, M.G.; Baran, A.J.; Wade D.P.; Tremba, E.L. (1993). Deposition of volcanic materials in the hot sections of two gas turbine engines, J. of Engineering for Gas Turbines and Power, 115, 641–651.

    Google Scholar 

  • Kirianov, V.Y.; Neal, C.A.; Gordeev, E.I.; Miller, R.P. (2002). The Kamchatkan Volcanic Eruption Response Team (KVERT): Reducing the Risk from Volcano Hazards, USGS Fact Sheet 064-02, U.S. Geological Survey, Reston, VA, 2 pp.

    Google Scholar 

  • Kunii, D.; Levenspiel, O. (1969). Fluidization Engineering, John Wiley & Sons, New York.

    Google Scholar 

  • Louis, J.F. (1979). A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteorology, 17, 187–202.

    Google Scholar 

  • Manomaiphiboon, K.; Russell, A.G. (2004). Effects of uncertainties in parameters of a Lagrangian particle model on mean ground-level concentrations under stable conditions, Atmospheric Environment, 38, 5529–5543.

    Google Scholar 

  • McGimsey, R.G.; Neal, C.A.; Riley, C.M. (2001). Areal Distribution, Thickness, Mass, Volume, and Grain Size of Tephra-fall Deposits from the 1992 Eruptions of Crater Peak Vent, Mt. Spurr Volcano, Alaska, USGS Open-File Report 2001-370, U.S. Geological Survey, Reston, VA, 38 pp.

    Google Scholar 

  • Miller, T.P.; Casadevall, T.J. (2000). Volcanic ash hazards to aviation, in H. Sigurdsson (Ed.), Encyclopedia of Volcanoes, Academic Press, San Diego, pp. 915–930.

    Google Scholar 

  • Miller, T.P.; McGimsey, R.G.; Richter, D.H.; Riehle, J.R.; Nye, C.J.; Yount, M.E.; Dumoulin, J.A. (1998). Catalog of the Historically Active Volcanoes of Alaska, USGS Open-File Report 98-0582, U.S. Geological Survey, Reston, VA, 104 pp.

    Google Scholar 

  • Oberhuber, J.M.; Herzog, M.; Graf, H.F.; Schwanke, K. (1998). Volcanic plume simulation on large scales, J. Volcanol. Geothermal Res., 87, 29–53.

    Google Scholar 

  • Papp, K.R.; Dean, K.G.; Dehn, J. (2005). Predicting regions susceptible to high concentrations of airborne volcanic ash in the North Pacific region, J. Volcanol. Geothermal Res., 148, 295–314.

    Google Scholar 

  • Power, J.A.; Nye, C.J.; Coombs, M.L.; Wessels, R.L.; Cervelli, P.F.; Dehn, J.; Wallace, K.L.; Freymueller, J.T.; Doukas, M.P. (2006). The reawakening of Alaska’s Augustine Volcano, EOS, Trans. Am. Geophys. Union, 87(37), 373, 377.

    Google Scholar 

  • Prata, A.J. (1989). Observations of volcanic ash clouds in the 10–12 mm window using AVHRR/2 data, Int. J. Remote Sensing, 10, 751–761.

    Google Scholar 

  • Pudykiewicz, J. (1988). Numerical simulation of the transport of radioactive cloud from the Chernobyl nuclear accident, Tellus, 40B, 241–259.

    Google Scholar 

  • Pudykiewicz, J. (1989). Simulation of the Chernobyl dispersion with a 3-D hemispheric tracer model, Tellus, 41B, 391–412.

    Google Scholar 

  • Raymond; A.; Shaw, R.A. (2003). Particle-turbulence interactions in atmospheric clouds, Ann. Rev. Fluid Mechanics, 35, 183–227.

    Google Scholar 

  • Richardson, L. (1926). Atmospheric diffusion on a distance-neighbor graph, Proc. Royal Society London, A110, 709–737.

    Google Scholar 

  • Robert, A. (1982). A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations, J. Meteorol. Society Japan, 60, 319–325.

    Google Scholar 

  • Rose, W.I.; Kostinski, A.B.; Kelley, L. (1995). Real-time C-Band Radar Observations of 1992 Eruption Clouds from Mt. Spurr Volcano, Alaska, USGS Bulletin 2139, U.S. Geological Survey, Reston, VA, pp. 19–26.

    Google Scholar 

  • Sarna-Wojcicki, A.M.; Shipley, S.; Waitt, Jr. R.B.; Dzurisin, D.; Wood, S.H.; Lipman, P.W.; Mullineaux, D.R. (1981). Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980, in P.W. Lipman and D.R. Mullineaux (Eds.), The 1980 Eruptions of Mount St. Helens, Washington (USGS Professional Paper 1250), U.S. Geological Survey, Reston, VA, pp. 577–600.

    Google Scholar 

  • Sassen, K.; Zhu, J.; Webley, P.W.; Dean, K.; Cobb, P. (2007). Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska, Geophys. Res. Lett., 34(8), doi: 10.1029/2006GL027237.

  • Schneider, D.J.; Rose, W.I.; Kelley, L. (1995). Tracking of 1992 Eruption Clouds from Crater Peak Vent of Mount Spurr Volcano, Alaska, Using AVHRR, USGS Bulletin 2139, U.S. Geological Survey, Reston, VA, pp. 27–36.

    Google Scholar 

  • Schumacher, R. (1994). A reappraisal of Mount St Helens ash clusters: Depositional model from experimental observation, J. Volcanol. Geothermal. Res., 59(3), 253–260.

    Google Scholar 

  • Searcy, C.; Dean, K.G.; Stringer, W. (1998). PUFF: A volcanic ash tracking and prediction model, J. Volcanol. Geothermal Res., 80, 1–16.

    Google Scholar 

  • Self, S.; Zhao, Jing-Xia; Holasel, R.E.; Torres, R.C.; King, A.J. (1996). The atmospheric impact of the 1991 Mount Pinatubo eruption, in C.G. Newhall and R.S. Punongbayan (Eds.), Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, Philippine Institute of Volcanology and Seismology, Quezon City, Philippines/University of Washington Press, Seattle, WA, pp. 1089–1115.

    Google Scholar 

  • Servranckx, R.; Chen, P. (2004). Modeling volcanic ash transport and dispersion: Expectations and reality, Proc. Second Int. Conf. on Volcanic Ash and Aviation Safety, June 21–24, 2004, Alexandria, VA.

    Google Scholar 

  • Servranckx, R.; D’Amours, R.; Jean, M.; Toviessi, J-P.; Trudel, S. (1996). Volcanic ash forecasting at the Canadian Meteorological Centre, paper presented at Pan Pacific Hazards ‘96, July 29–August 2, 1996, Environmental Emergency Response Division, Environment Canada, Vancouver, BC.

    Google Scholar 

  • Simkin, T.; Siebert, L. (1994). Volcanoes of the World, Global Volcanism Program, Smithsonian Institution, Washington, D.C./Geoscience Press, Tucson, AZ.

    Google Scholar 

  • Simpson, J.J.; Hufford, G.L.; Pieri, D.; Servranckx, R.; Berg, J.; Bauer, C. (2002). The February 2001 eruption of Mount Cleveland, Alaska: Case study of an aviation hazard, Weather and Forecasting, 17(4), 691–704.

    Google Scholar 

  • Simpson, J.J.; Hufford, G.L.; Servranckx, R.; Berg, J.; Pieri, D. (2003). Airborne Asian dust: Case study of long-range transport and implications for the detection of volcanic ash, Weather and Forecasting, 18(2), 121–141.

    Google Scholar 

  • Slade, D. (1968). Meteorology and Atomic Energy, U.S. Department of Commerce, Springfield, VA.

    Google Scholar 

  • Sparks, R.S.J.; Bursik, M.I.; Carey, S.N.; Gilbert, J.S.; Glaze, L.S.; Sigurdsson, H.; Woods, A.W. (1997). Volcanic Plumes, John Wiley & Sons, Chichester, U.K., 574 pp.

    Google Scholar 

  • Stunder, B.; Heffter, J. (2004). Volcanic ash dispersion modeling research at NOAA Air Resources Laboratory, Proc. Second Int. Conf. Volcanic Ash and Aviation Safety, Alexandria, VA.

    Google Scholar 

  • Stunder, B.J.B.; Heffter, J.L.; Draxler R.R. (2007). Airborne volcanic ash forecast area reliability, Weather and Forecasting, 22, 1132–1139.

    Google Scholar 

  • Suzuki, T. (1983). A theoretical model for dispersion of tephra, in D. Shimozuru and I. Yokoyama (Eds.), Arc Volcanism: Physics and Tectonics, Terra Scientific, Tokyo, pp. 95–113.

    Google Scholar 

  • Tanaka, H.L.; Kanetaka, M. (2004). Real time prediction system of forest-fire smoke using satellite data and the PUFF Model, Proc. Fifth Int. Workshop on Global Change: Connection to the Arctic, November 15–16, 2004, Tsukuba, Japan, pp. 103–106.

    Google Scholar 

  • Textor, C.; Graf, H.F.; Herzog, M.; Oberhuber, J.M.; Rose, W.I.; Ernst, G.G.J. (2006). Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydro-meteors and ash, J. Volcanol. Geothermal Res., 150, 359–377.

    Google Scholar 

  • Tupper, A.; Davey, J.; Stewart, P.; Stunder, B.; Servranckx, R.; Prata, F. (2006). Aircraft encounters with volcanic clouds over Micronesia, Oceania, 2002–03, Australian Meteorological Magazine, 55, 289–299.

    Google Scholar 

  • Tupper, A.; Itikarai, I.; Richards, M.; Prata, F.; Carn, S.; Rosenfield, D. (2007). Facing the challenges of the International Airways Volcano Watch: The 2004/ 2005 eruptions of Manam, Papua New Guinea, Weather and Forecasting, 22, 175–191.

    Google Scholar 

  • Webley, P.W.; Dean K.; Collins, R.; Fochesatto, J.; Sassen, K.; Atkinson, D.; Cahill, C.; Prata, A. (2008). Validation of a volcanic ash dispersion model during late January/early February 2006 eruption of Mount Augustine Volcano, Bull. Amer. Meteorol. Society, 1647–1658, doi: 10.1175/2008BAMS2579.1.

  • Wen, S.; Rose, W.I. (1994). Retrieval of particle sizes and masses in volcanic clouds using AVHRR bands 4 and 5, J. Geophys. Res., 99, 5421–5431.

    Google Scholar 

  • Wilks, D.S. (2006). 2006 Statistical Methods in the Atmospheric Sciences, Second Edition (International Geophysics Series), Academic Press, St. Louis, MO, 627 pp.

    Google Scholar 

  • Wilson, L.; Huang, T.C. (1979). The influence of shape on the atmospheric settling velocity of volcanic ash particles, Earth Planet Science Lett., 44, 311–324.

    Google Scholar 

  • Woods, A.W. (1995). The dynamics of explosive volcanic eruptions, Rev. Geophysics, 33, 495–530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rorik Peterson .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peterson, R., Webley, P., D’Amours, R., Servranckx, R., Stunder, B., Papp, K. (2015). Volcanic ash transport and dispersion models. In: Monitoring Volcanoes in the North Pacific. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68750-4_7

Download citation

Publish with us

Policies and ethics