Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1696))

Abstract

Zariski geometries were introduced by Hrushovski and Zilber in [HrZi 96], [HrZi 93] and [Zil]. From a technical point of view this work provides a class of strongly minimal sets where Zilber’s conjecture holds (see [Zie, end of section 5]. It also provides the answer to two metamathematical questions. How do you characterize the topological spaces that arise from the Zariski topology of an algebraic curve? Can you recover the field from the topological spaces? The answer to these questions is provided by Theorem 3.3 below. This result plays a key role in Hrushovski’s proof of the Mordell-Lang conjecture for function fields.

Author partially supported by NSF grants DMS-9306159, DMS-9626856 and INT-9224546, and an AMS Centennial Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.

    Google Scholar 

  2. E. Bouscaren, The group configuration-after E. Hrushovski, in The Model Theory of Groups, A. Nesin and A. Pillay ed., Notre Dame University Press, 1989.

    Google Scholar 

  3. E. Bouscaren, Proof of the Mordell-Lang conjecture for function fields, this volume.

    Google Scholar 

  4. V.I. Danilov, Algebraic Varieties and Schemes, in Algebraic Geometry I, I.R. Shafarevich ed., EMS 23, Springer, 1994.

    Google Scholar 

  5. F. Delon, Separably closed fields, this volume.

    Google Scholar 

  6. P. Griffiths, Introduction to Algebraic Curves, Translations of Math. Mon. 76, AMS (1989).

    Google Scholar 

  7. R. Hartshorne, Algebraic Geometry, Springer, 1977.

    Google Scholar 

  8. E. Hrushovski, The Mordell-Lang conjecture for function fields, J.AMS 9 (1996), 667–690.

    MATH  MathSciNet  Google Scholar 

  9. E. Hrushovski and Z. Sokolovic, Strongly minimal sets in differentially closed fields, preprint.

    Google Scholar 

  10. E. Hrushovski and B. Zilber, Zariski Geometries, Bulletin AMS 28 (1993), 315–323.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Hrushovski and B. Zilber, Zariski Geometries, Journal AMS 9 (1996), 1–56.

    MATH  MathSciNet  Google Scholar 

  12. D. Marker, Model Theory of Differential Fields, Model Theory of Fields, Lecture Notes in Logic 5, Springer, 1996.

    Google Scholar 

  13. D. Marker, M. Messmer and A. Pillay, Model Theory of Fields, Lecture Notes in Logic 5, Springer, 1996.

    Google Scholar 

  14. D. Marker and A. Pillay, Reducts of (ℂ, +,·) which contain +, J. Symbolic Logic 55 (1990), 1243–1251.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Pillay, Differential algebraic groups and the number of countable differentially closed fields, Model Theory of Fields, Lecture Notes in Logic 5, Springer, 1996.

    Google Scholar 

  16. A. Pillay, Geometrical Stability Theory, Oxford University Press, 1996.

    Google Scholar 

  17. A. Pillay, Model theory of algebraically closed fields, this volume.

    Google Scholar 

  18. E. Rabinovich, Interpreting a field in a sufficiently rich incidence system, QMW Press (1993).

    Google Scholar 

  19. I.R. Shafarevich, Basic Algebraic Geometry, Springer, 1977.

    Google Scholar 

  20. C. Wood, Differentially closed fields, this volume.

    Google Scholar 

  21. M. Ziegler, Introduction to stability theory and Morley rank, this volume.

    Google Scholar 

  22. B. Zilber, Lectures on Zariski type structures, lecture notes (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marker, D. (1998). Zariski geometries. In: Bouscaren, E. (eds) Model Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol 1696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68521-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68521-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64863-5

  • Online ISBN: 978-3-540-68521-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics