Skip to main content

Agricultural Crop Models: Concepts of Resource Acquisition and Assimilate Partitioning

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 70))

In this review, we analyze how the acquisition of resources, e.g. carbon (C) and nitrogen (N), and the distribution of assimilates between plant organs is described by common agricultural crop growth models. We consider agricultural crop growth models that are integrated into larger agro-ecosystem or agricultural soilplant-atmosphere system models. These system models are developed to simulate not only plant growth processes but also energy and matter fluxes between atmosphere and soil including decomposition of plant residues and C- and N-turnover of soil organic matter. Within the crop models different approaches are used to up-scale eco-physiological processes from the plant-organ level to the plant and canopy level, they are discussed with respect to data requirement and adequate representation of resource acquisition. Considering mainly trees, basic concepts used to model assimilate partitioning in plants have been classified as empirical, teleonomic, based on source-sink relations or based on transport and transformation processes. Application of these concepts in agricultural crop models are presented and examined. Moreover, a survey of modeling approaches is given that consider the impact of different kinds of biotic and abiotic stresses on partitioning in crop growth models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amthor JS. (1988) Growth and maintenance respiration in leaves of bean (Phaseolus vulgaris L.) exposed to ozone in open-top chambers in the field. New Phytol 110:319–325

    CAS  Google Scholar 

  • Amthor J, Goulden M, Munger J, Wofsy S. (1994) Testing a mechanistic model of forest-canopy mass and energy exchange using eddy correlation: carbon dioxide and ozone uptake by a mixed oak-maple stand. Funct Plant Biol 21:623–651

    CAS  Google Scholar 

  • Asseng S, Milroy SP. (2006) Simulation of environmental and genetic effects on grain protein concentration in wheat. Eur J Agron 25:119–128

    CAS  Google Scholar 

  • Bazzaz F. (1997) Allocation of resources in plants: state of the science and critical questions. In: Bazzaz F, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 1–37

    Google Scholar 

  • Beek J, Frissel M. (1973) Simulation of nitrogen behavior in soils. PUDOC, Wageningen

    Google Scholar 

  • Belmans C, Wesseling J, Feddes R. (1983) Simulation model of the water balance of a cropped soil: SWATRE. J Hydrol 63:271–286

    Google Scholar 

  • Berghuijs-van Dijk J, Rijtema P, Roest C. (1985) ANIMO Agricultural Nitrogen Model. NOTA 1671. Institute for Land and Water Management Research, Wageningen

    Google Scholar 

  • Beyschlag W, Ryel R. (2007) Canopy photosynthesis modeling. In: Pugnaire F, Valladares F (eds) Functional plant ecology, 2nd edn. CRC, Boca Raton, pp 627–653

    Google Scholar 

  • Boogaard H, van Diepen C, Rötter R, Cabrera J, van Laar H. (1998) WOFOST 7.1, User’s guide for the WOFOST 7.1 crop growth simulation model and WOFOST control center 1.5. Tech. rep., DLO Winand Staaring Centre

    Google Scholar 

  • Boote K, Jones J, Mishoe J, Berger R. (1983) Coupling pests to crop growth simulators to predict yield reductions. Phytopathology 73:1581–1587

    Google Scholar 

  • Bouman BAM, van Keulen H, van Laar HH, Rabbinge R. (1996) The “School of de Wit” crop growth simulation models: A pedigree and historical overview. Agric Sys 52:171–198

    Google Scholar 

  • Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussiere F, Cabidoche YM, Cellier P, Debaeke P, Gaudillere JP, Henault C, Maraux F, Seguin B, Sinoquet H. (2003) An overview of the crop model. Eur J Agron 18:309–332

    Google Scholar 

  • Bruhn J, Fry W. (1981) Analysis of potato light blight epidemiology by simulation modelling. Phytopathology 71:612–616

    Google Scholar 

  • Bryant J, Chapin F, Klein D. (1983) Carbon/nutrient balance of boreal plants in relation to verte-brate herbivory. Oikos 40:357–368

    CAS  Google Scholar 

  • Chen JM, Liu J, Cihlar J, Goulden ML. (1999) Daily canopy photosynthesis model through tem-poral and spatial scaling for remote sensing applications. Ecol Model 124:99–119

    CAS  Google Scholar 

  • Coley P, Bryant J, Chapin F. (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    PubMed  CAS  Google Scholar 

  • de Pury D, Farquhar G. (1997) Simple scaling of photosynthesis from leaves to canopies without errors of big-leaf models. Plant Cell Environ 20:537–557

    Google Scholar 

  • de Willigen P. (1991) Nitrogen turnover in the soil-crop system: comparison of fourteen simulation models. Fert Res 27:141–149

    Google Scholar 

  • Diekkrüger B, Arning M. (1995) Simulation of water fluxes using different methods for estimating soil parameters. Ecol Model 81:83–95

    Google Scholar 

  • Diekkrüger B, Söndgerath D, Kersebaum KC, McVoy CW. (1995) Validity of agroecosystem models a comparison of results of different models applied to the same data set. Ecol Model 81:3–29

    Google Scholar 

  • Dixon RA. (2001) Natural products and plant disease resistance. Nature 411:843–847

    PubMed  CAS  Google Scholar 

  • Dutt G, Shaffer M, Moore W. (1972) Computer simulation model of dynamic biophysiochemical processes in soils. Univ. Arizona Agric. Exp. Stn. Tech. Bull. 196

    Google Scholar 

  • Eitzinger J, Trnka M, Hosch J, Zalud Z, Dubrovsky M. (2004) Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecol Model 171:223–246

    Google Scholar 

  • Engel T, Priesack E. (1993) Expert-N, a building block system of nitrogen models as a resource for advice, research, water management and policy. In: Eijsackers H, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer Academic, Dordrecht, pp 503–507

    Google Scholar 

  • Engel T, Klöcking B, Priesack E, Schaaf T. (1993) Simulationsmodelle zur Stickstoffdynamik, vol. 25 of Agrarinformatik. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Farquhar GD, Caemmerer S, Berry JA. (1980) A biochemical model of photosynthetic CO2 assimi-lation in leaves of C3 species. Planta 149:78–90

    CAS  Google Scholar 

  • Feddes RA, Raats P. (2004) Parameterizing the soil-water-plant root system. In: Feddes RA, De Rooij G, van Dam JC (eds) Unsaturated-Zone Modelling, Wageningen UR Frontis Series 6. Kluwer Academic, Dordrecht, pp 95–141

    Google Scholar 

  • Feddes R, Kowalik P, Zaradny H. (1978) Simulation of field water use and crop yield. Simulation Monographs. Pudoc, Wageningen

    Google Scholar 

  • Fine PV, Miller Z, Mesones I, Irazuzta S, Appel H, Stevens M, Sääksjärvi I, Schultz J, Coley P. (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87(Suppl.):150–162

    Google Scholar 

  • Franko U, Oelschlagel B, Schenk S. (1995) Simulation of temperature-, water- and nitrogen dynamics using the model CANDY. Ecol Model 81:213–222

    CAS  Google Scholar 

  • Friend AD. (2001) Modelling canopy CO2 fluxes: are “big-leaf” simplifications justified? Global Ecol Biogeogr 10:603–619

    Google Scholar 

  • Frissel M, Poelstra P, Reiniger P. (1970) Chromatographic transport through soils. III. A simula-tion model for the valuation of the apparent diffusion coefficient in undisturbed soils with triti-ated water. Plant Soil 33:161–176

    CAS  Google Scholar 

  • Gayler S, Priesack E. (2005) PLATHO, a simulation model of resource allocation in the plant-soil system. Tech. rep., GSF – Institute of Soil Ecology. http://www.sfb607.de/english/projects/c2/ platho.pdf, Cited 31 Dec 2007

  • Gayler S, Wang E, Priesack E, Schaaf T, Maidl FX. (2002) Modelling biomass growth, N-uptake and phenological development of potato crop. Geoderma 105:367–383

    CAS  Google Scholar 

  • Gayler S, Grams T, Heller W, Treutter D, Priesack E. (2008) A dynamic model of environmental effects on allocation to carbon-based secondary compounds in juvenile trees. Ann Bot. 101, 1089–1098 doi:10.1093/aob/mcm169

    PubMed  CAS  Google Scholar 

  • Genard M, Dauzat J, Franck N, Lescourret F, Moitrier N, Vaast P, Vercambre G. (2008) Carbon allocation in fruit trees: from theory to modelling. Trees 22, 269–282 doi: 10.1007/s00468-007-0176-5

    Google Scholar 

  • Gilding B. (1992) Mathematical modelling of saturated and unsaturated groundwater flow. In: Shutie X (ed) Flow and transport in porous media. Summer School, Beijing, China, 8.–26. August 1988. World Scientific, Singapore, pp 1–166

    Google Scholar 

  • Glynn C, Herms DA, Egawa M, Hansen R, Mattson WJ. (2003) Effects of nutrient availability on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar. Oikos 101:385–397

    CAS  Google Scholar 

  • Goudriaan J. (1977) Crop micrometeorology: a simulation study. Simulation Monographs. Pudoc, Wageningen

    Google Scholar 

  • Goudriaan J. (1986) A simple and fast numerical method for the computation of daily totals of crop photosynthesis. Agric Forest Meteorol 38:249–254

    Google Scholar 

  • Goudriaan J, van Laar H. (1994) Modelling potential crop growth processes. Textbook with exer-cises. Kluwer Academic, Dordrecht

    Google Scholar 

  • Hansen S, Jensen H, Nielsen N, Svendsen H. (1990) DAISY – Soil Plant Atmosphere System Model. The Royal Veterinary and Agricultural University, Copenhagen

    Google Scholar 

  • Herms DA, Mattson WJ. (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Hilbert DW. (1990) Optimization of plant root: shoot ratios and internal nitrogen concentration. Ann Bot 66:91–99

    CAS  Google Scholar 

  • Hutson J, Wagenet R. (1992) LEACHM: Leaching Estimation And Chemistry Model: A process-based model of water and solute movement, transformations, plant uptake and chemical reac-tions in the unsaturated zone. Version 3.0. Research Series No. 93–3. Cornell University, Ithaca, NY

    Google Scholar 

  • Huwe B, van der Ploeg RR. (1991) WHNSIM – a soil nitrogen simulation model for Southern Germany. Nutr Cycl Agroecosys 27:331–339

    CAS  Google Scholar 

  • Johnsson H, Bergström L, Jansson P, Paustian K. (1987) Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric Ecosys Env 18:333–356

    Google Scholar 

  • Jones C, Kiniry J. (1986) CERES-Maize: a simulation model of maize growth and development. Texas A&M University Press, Temple, TX

    Google Scholar 

  • Jones CG, Hartley SE. (1999) A protein competition model of phenolic allocation. Oikos 86:27–44

    CAS  Google Scholar 

  • Jones C, Bland W, Ritchie J, Williams JR. (1991) Simulation of root growth. In: Hanks J, Ritchie J (eds) Modeling plant and soil systems, Agronomy 31. ASA, CSSA, SSSA, Madison, WI, pp 91–123

    Google Scholar 

  • Jones JW, Keating BA, Porter CH. (2001) Approaches to modular model development. Agric Sys 70:421–443

    Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT. (2003) The DSSAT cropping system model. Eur J Agron 18:235–265

    Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ. (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288

    Google Scholar 

  • Kersebaum KC. (1989) Die Simulation der Stickstoff-Dynamik von Ackerböden. Ph.D. thesis, Universität Hannover

    Google Scholar 

  • Kersebaum KC. (1995) Application of a simple management model to simulate water and nitrogen dynamics. Ecol Model 81:145–156

    CAS  Google Scholar 

  • Kersebaum K, Hecker JM, Mirschel W, Wegehenkel M. (2007) Modelling water and nutrient dynamics in soil-crop systems: a comparison of simulation models applied on common data sets. In: Kersebaum K, Hecker JM, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil-crop systems. Springer, Dordrecht, pp 1–17

    Google Scholar 

  • Koricheva J. (2002) Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83:176–190

    Article  Google Scholar 

  • Kroes J, van Dam J. (2003) Reference Manual SWAP 3.03. Alterra-report 773. Alterra, Green World Research, Wageningen, The Netherlands

    Google Scholar 

  • Kroes J, Roelsma J. (2007) Simulation of water and nitrogen flows on field scale; application of the SWAP-ANIMO model for the Müncheberg data set. In: Kersebaum K, Hecker JM, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil-crop systems. Springer, Dordrecht, pp 111–128

    Google Scholar 

  • Kropff MJ, van Laar HH. (1993) Modelling crop-weed interactions. CAB International, Wallingford, UK

    Google Scholar 

  • Kropff MJ, Teng PS, Rabbinge R. (1995) The challenge of linking pest and crop models. Agr Syst 49:413–434

    Google Scholar 

  • Lacointe A. (2000) Carbon allocation among tree organs: a review of basic processes and repre-sentation in functional–structural tree models. Ann For Sci 57:521–533

    Google Scholar 

  • Leonard R, Knisel W, Still D. (1987) GLEAMS: grondwater loading effects of agricultural man-agement systems. Trans ASAE 30:1403–1418

    Google Scholar 

  • LeRoux X, Lacointe A, Escobar-Gutiérrez A, Dizès SL. (2001) Carbon-based models of individual tree growth: a critical appraisal. Ann For Sci 58:469–506

    Google Scholar 

  • Leser C, Treutter D. (2005) Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiol Plantarum 123:49–56

    CAS  Google Scholar 

  • Leuning R, Kelliher FM, Pury DGG, Schultze ED. (1995) Leaf nitrogen, photosynthesis, conduct-ance and transpiration: scaling from leaves to canopies. Plant Cell Environ 18:1183–1200

    Google Scholar 

  • Li C, Frolking S, Frolking T. (1992) A model of nitrous oxide evolution from soil driven by rainfall events. 1. Model structure and sensitivity. J Geophys Res 97:9759

    CAS  Google Scholar 

  • Lizaso JI, Batchelor WD, Boote KJ, Westgate ME. (2005) Development of a leaf-level canopy assimilation model for CERES-maize. Agron J 97:722–733

    Google Scholar 

  • Marcelis L, Heuvelink E. (2007) Concepts of modelling carbon allocation among plant organs. In: Vos J, Marcelis L, de Visser P, Struijk P, Evers J (eds) Functional–structural plant modelling in crop production, Wageningen UR Frontis Series 22. Springer, Dordrecht, The Netherlands, pp 103–111

    Google Scholar 

  • Martre P, Jamieson PD, Semenov MA, Zyskowski RF, Porter JR, Triboi E. (2006) Modelling pro-tein content and composition in relation to crop nitrogen dynamics for wheat. Eur J Agron 25:138–154

    CAS  Google Scholar 

  • Mattson W, Julkunen-Tiitto R, Herms D. (2005) CO2 enrichment and carbon partitioning to phe-nolics: do plant responses accord better with the protein competition or the growth-differentiation balance model? Oikos 111:337–347

    CAS  Google Scholar 

  • Matyssek R, Agerer R, Ernst D, Munch JC, Osswald W, Pretzsch H, Priesack E, Schnyder H, Treutter D. (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580

    PubMed  CAS  Google Scholar 

  • McIsaac G, Martin D, Watts D. (1985) Users guide to NITWAT – a nitrogen and water manage-ment model. Agr. Eng. Dpt. University of Nebraska, Lincoln, NA

    Google Scholar 

  • Mehran M, Tanji K. (1974) Computer modeling of nitrogen transformations in soil. J Environ Qual 3:391–396

    CAS  Google Scholar 

  • Mittelstraß K, Treutter D, Pleßl M, Heller W, Elstner E, Heiser I. (2006) Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resist-ance to phytophthora infestans and alternaria solani. Plant Biol 8:653–661

    PubMed  Google Scholar 

  • Molina J, Clapp C, Shaffer M, Chichester F, Larson W. (1983) NCSOIL – a model of nitrogen and carbon transformations in soil: description, calibration and behavior. Soil Sci Soc Am J 47:85–91

    CAS  Google Scholar 

  • Monteith J. (1973) Principles of environmental physics. Edward Arnold, London

    Google Scholar 

  • Nikolov NT, Massman WJ, Schoettle AW. (1995) Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C3 plants. Ecol Model 80:205–235

    CAS  Google Scholar 

  • Norman J. (1993) Scaling processes between leaf and canopy levels. In: Ehleringer J, Field C (eds) Scaling Physilogical Processes: Leaf to Global. Academic, London, pp 43–75

    Google Scholar 

  • Parton W, Ojima D, Cole C, Schimel D. (1994) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Bryant R, Arnold R (eds) Quantitative modeling of soil forming processes. Soil Sci. Soc. Am., Madison, WI, pp 147–167

    Google Scholar 

  • Penning de Vries F, Jansen D, ten Berge H, Bakema A. (1989) Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs 29. Pudoc, Wageningen, NL

    Google Scholar 

  • Plöchl M, Lyons T, Ollerenshaw J, Barnes J. (2000) Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210:454–467

    PubMed  Google Scholar 

  • Priesack E. (2006) Expert-N Dokumentation der Modell-Bibliothek. FAM Bericht 60. Hieronymus, München

    Google Scholar 

  • Rabbinge R, Bastiaans L. (1989) Combination models, crop growth and pests and diseases. In: Rabbinge R, Ward S, Van Laar H (eds) Simulation and systems management in crop protec-tion, vols. 32 of Simulation Monographs. Pudoc, Wageningen, The Netherlands, pp 217–239

    Google Scholar 

  • Ritchie J, Godwin D, Otter-Nacke S. (1987) CERES-Wheat – A simulation model of wheat growth and development. Texas A&M University Press, College Station, TX

    Google Scholar 

  • Röhrig M, Stützel H. (2001) A model for light competition between vegetable crops and weeds. Eur J Agron 14:13–29

    Google Scholar 

  • Ros B, Thümmler F, Wenzel G. (2005) Comparative analysis of phytophthora infestans induced gene expression in potato cultivars with different levels of resistance. Plant Biol 7:686–693

    PubMed  CAS  Google Scholar 

  • Seligman N, van Keulen H. (1981) PAPRAN: a simulation model of annual pasture production limited by rainfall and nitrogen. In: Frissel M, van Veen J (eds) Simulation of nitrogen behav-ior of soil-plant systems, Proc. Workshop. PUDOC, Wageningen, pp 192–221

    Google Scholar 

  • Shaffer M, Halvorson A, Pierce F. (1991) Nitrate leaching and economic analysis package (NLEAP): model description and application. In: Follet R, Keeney D, Cruse R (eds), Managing nitrogen for groundwater quality and farm profitability. Soil Sci. Soc. Am., Madison, WI, pp 285–322

    Google Scholar 

  • Shaffer M, Ma L, Hansen S (eds). (2001) Modeling carbon and nitrogen dynamics for soil manage-ment. Lewis Publishers, Boca Raton

    Google Scholar 

  • Smith JU, Bradbury N, Addiscott TM. (1996) SUNDIAL: a PC-based system for simulating nitro-gen dynamics in arable land. Agron J 88:38–43

    Article  Google Scholar 

  • Sperr C, Engel T, Priesack E. (1993) Expert-N, Aufbau, Bedienung und Nutzungsmöglichkeiten des Prototyps. In: Engel T, Baldioli M (eds) Expert-N und Wachstumsmodelle. Referate des Anwenderseminars im März 1993 in Weihenstephan, Agrarinformatik 24. Verlag Eugen Ulmer, Stuttgart, pp 41–57

    Google Scholar 

  • Spitters C. (1986) Separating the diffuse and direct component of global radiation and its implica-tions for modeling canopy photsynthesis. II. Calculations of canopy photosynthesis. Agric Forest Meteorol 38:231–242

    Google Scholar 

  • Spitters C, van Keulen H, van Kraalingen D. (1989) A simple and universal crop growth simulator: SUCROS87. In: Rabbinge R, Ward S, van Laar H (eds) Simulation and systems management in crop production. Simulation Monographs 32. Pudoc, Wageningen, pp 147–181

    Google Scholar 

  • Stamp N. (2003) Out of the quagmire of plant defense-hypotheses. Q Rev Biol 78:23–55

    PubMed  Google Scholar 

  • Stenger R, Priesack E, Barkle G, Sperr C. (1999) Expert-N A tool for simulating nitrogen and car-bon dynamics in the soil-plant-atmosphere system. In: Tomer M, Robinson M, Gielen G (eds) NZ Land Treatment Collective Proceedings Technical Session 20: Modelling of Land Treatment Systems. New Plymouth, New Zealand, pp 19–28

    Google Scholar 

  • Stockle CO, Martin SA, Campbell GS. (1994) CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield. Agric Sys 46:335–359

    Google Scholar 

  • Stockle CO, Donatelli M, Nelson R. (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307

    Google Scholar 

  • Tanji K, Gupta S. (1978) Computer simulation modeling for nitrogen in irrigated croplands. In: Nielsen D, MacDonald AJ (eds) Nitrogen in the environment, vol. I. Academic, New York, pp 79–120

    Google Scholar 

  • Thornley J, Johnson I. (1990) Plant and crop modelling. A mathematical approach to plant and crop physiology. Clarendon, Oxford, UK

    Google Scholar 

  • Tiktak A, van Grinsven HJM. (1995) Review of sixteen forest-soil-atmosphere models. Ecol Model 83:35–53

    CAS  Google Scholar 

  • Triboi E, Martre P, Girousse C, Ravel C, Triboi-Blondel AM. (2006) Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. Eur J Agron 25:108–118

    CAS  Google Scholar 

  • Tuomi J, Fagerstrom T, Niemela P. (1991) Carbon allocation, phenotypic plasticity, and induced defense. In: Tallamy D, Raupp M (eds) Phytochemical induction by herbivores. Wiley, New York, N.Y. USA, pp 85–104

    Google Scholar 

  • van den Berg M, Driessen PM. (2002) Water uptake in crop growth models for land use systems analysis: I. A review of approaches and their pedigrees. Agric Ecosys Env 92:21–36

    Google Scholar 

  • van den Berg M, Driessen PM, Rabbinge R. (2002) Water uptake in crop growth models for land use systems analysis: II. Comparison of three simple approaches. Ecol Model 148:233–250

    Google Scholar 

  • van Genuchten MT, Davidson J, Wierenga P. (1974) An evaluation of kinetic and equilibrium equations for the prediction of pesticide movement through porous media. Soil Sci Soc Am Proc 38:29–35

    CAS  Google Scholar 

  • van Ittersum MK, Leffelaar PA, van Keulen H, Kropff MJ, Bastiaans L, Goudriaan J. (2003) On approaches and applications of the Wageningen crop models. Eur J Agron 18:201–234

    Google Scholar 

  • van Laar HH, Goudriaan J, van Keulen H. (1997) SUCROS97: Simulation of crop growth for potential and water-limited production situations. Quantitative Approaches in System Analysis 14. C.T. de Wit Graduate School for Production Ecology and Resource Conservation, Wageningen

    Google Scholar 

  • van Oijen M, Dreccer M, Firsching KH, Schnieders B. (2004) Simple equations for dynamic mod-els of the effect of CO2 and O3 on light-use efficiency and crop growth. Ecol Model 179:39–60

    CAS  Google Scholar 

  • Vanclooster M, Viaene P, Diels J, Feyen J. (1995) A deterministic evaluation analysis applied to an integrated soil-crop model. Ecol Model 81:183–195

    CAS  Google Scholar 

  • Vos J, Marcelis L, de Visser P, Struijk P, Evers J (eds). (2007) Functional-Structural Plant Modelling in Crop Production. Wageningen UR Frontis Series 22. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Wang E, Engel T. (2000) SPASS: a generic process-oriented crop model with versatile windows interfaces. Env Model Softw 15:179–188

    Google Scholar 

  • Wang E, Smith C. (2004) Modelling the growth and water uptake function of plant root systems: a review. Aust J Agric Res 55:501–523

    Google Scholar 

  • Wang YP, Leuning R. (1998) A two-leaf model for canopy conductance, photosynthesis and parti-tioning of available energy I: Model description and comparison with a multi-layered model. Agric Forest Meteorol 91:89–111

    Google Scholar 

  • Wang E, Robertson MJ, Hammer GL, Carberry PS, Holzworth D, Meinke H, Chapman SC, Hargreaves JNG, Huth NI, McLean G. (2002) Development of a generic crop model template in the cropping system model APSIM. Eur J Agron 18:121–140

    Google Scholar 

  • Watts D, Hanks J. (1978) A soil-water-nitrogen model for irrigated corn on sandy soils. Soil Sci Soc Am J 42:492–499

    CAS  Google Scholar 

  • Wegehenkel M. (2000) Test of a modelling system for simulating water balances and plant growth using various different complex approaches. Ecol Model 129:39–64

    Google Scholar 

  • Weiss A. (2003) Introduction. Agron J 95:1–3

    Google Scholar 

  • Weiss A, Moreno-Sotomayer A. (2006) Simulating grain mass and nitrogen concentration in wheat. Eur J Agron 25:129–137

    CAS  Google Scholar 

  • White JW. (2006) From genome to wheat: emerging opportunities for modelling wheat growth and development. Eur J Agron 25:79–88

    CAS  Google Scholar 

  • Wierenga P, de Wit C. (1970) Simulation of heat transfer in soils. Soil Sci Soc Am Proc 34:845–848

    Google Scholar 

  • Williams JR, Renard K. (1985) Assessment of soil erosion and crop productivity with process models (EPIC). In: Follet R, Stewart B (eds) Soil erosion and crop productivity. Soil Sci. Soc. Am., Madision, WI, pp 68–102

    Google Scholar 

  • Willocquet L, Savary S, Fernandez L, Elazegui F, Castilla N, Zhu D, Tang Q, Huang S, Lin X, Singh H, Srivastava R. (2002) Structure and validation of RICEPEST, a production situation-driven, crop growth model simulating rice yield response to multiple pest injuries for tropical Asia. Ecol Model 153:247–268

    Google Scholar 

  • Wolf J, van Oijen M. (2003) Model simulation of effects of changes in climate and atmospheric CO2 and O3 on tuber yield potential of potato (cv. Bintje) in the European Union. Agr Ecosyst Environ 94:141–157

    CAS  Google Scholar 

  • Yang HS, Dobermann A, Lindquist JL, Walters DT, Arkebauer TJ, Cassman KG. (2004) Hybrid-maize–a maize simulation model that combines two crop modeling approaches. Field Crops Res 87:131–154

    Google Scholar 

  • Yin X, Schapendonk AHCM. (2004) Siulating the partitioning of biomass and nitrogen between roots and shoot in crop and grass plants. NJAS Wagen J Life Sci 51:407–426

    Article  Google Scholar 

  • Yin X, van Laar H. (2005) Crop Systems Dynamics. Wageningen Academic, Wageningen

    Google Scholar 

  • Yin X, Schapendonk AHCM, Kropff MJ, van Oijen M, Bindraban PS. (2000) A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence. Ann Bot 85:579–585

    Google Scholar 

  • Yin X, Lantinga EA, Schapendonk AHCM, Zhong X. (2003) Some Quantitative Relationships between Leaf Area Index and Canopy Nitrogen Content and Distribution. Ann Bot 91:893–903

    PubMed  CAS  Google Scholar 

  • Yin X, Van Oijen M, Schapendonk AHCM. (2004) Extension of a biochemical model for the gen-eralized stoichiometry of electron transport limited C3 photosynthesis. Plant Cell Environ 27:1211–1222

    CAS  Google Scholar 

  • Zhang Y, Li C, Zhou X, Moore B III. (2002) A simulation model linking crop growth and soil bio-geochemistry for sustainable agriculture. Ecol Model 151:75–108

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckart Priesack .

Editor information

Ulrich Lüttge Wolfram Beyschlag Burkhard Büdel Dennis Francis

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Priesack, E., Gayler, S. (2009). Agricultural Crop Models: Concepts of Resource Acquisition and Assimilate Partitioning. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany. Progress in Botany, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68421-3_9

Download citation

Publish with us

Policies and ethics