Skip to main content

Structure and Regulation of Plant Vacuolar H+-ATPase

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 70))

The vacuolar proton translocating ATPase (V-ATPase) is an essential protein complex present in all eukaryotes which functions as ATP-driven rotary motor. In higher eukaryotes, the V-ATPase consists of 13 different subunits. The V-ATPase assembly occurs at the stage of the ER and the presence of isogenes enables the formation of multiple V-ATPase-isoenzymes in dependence on tissuespecific and subcellular requirements. V-ATPases are essential for the cytosolic pH homeostasis, the generation of a proton motive force and the pH-controlled termination of receptor–ligand interactions within secretory and endocytotic pathways. Especially in plants, V-ATPases are also involved in developmental events such as cell expansion and mechanisms of stress defense, e.g. vacuolar sequestration of toxic compounds. The regulation depends on the cellular redox state, nucleotide-availability and the developmental stage. This review focuses mainly on the structure of the V-ATPase: the subunit-composition, assembly, as well as regulatory structural alterations and protein–protein-interactions, of the V-ATPase are summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi I, Puopolo K, Marquez-Sterling N, Arai H, Forgac M (1990) Dissociation, cross-linking, and glykosylation of the coated vesicle proton pump. J Biol Chem 265:967–973

    PubMed  CAS  Google Scholar 

  • Alexandersson E, Saalbach G, Larsson C, Kjellbom P (2004) Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant Cell Physiol. 45:1543–1556

    PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

    PubMed  CAS  Google Scholar 

  • Arechaga I, Jones PC (2001) The rotor in the membrane of the ATPsynthase and its relatives. FEBS Lett 494:1–5

    PubMed  CAS  Google Scholar 

  • ArmbrĂĽster A, Svergun DI, Coskun Ăś, Juliano S, Bailer SM, GrĂĽber G (2004) Structural analysis of the stalk subunit Vma5p of the yeast V-ATPase in solution. FEBS Lett 570:119–125

    PubMed  Google Scholar 

  • ArmbrĂĽster A, Hohn C, Hermesdorf A, Schumacher K, Börsch M, GrĂĽber G (2005) Evidence for major structural changes in subunit C of the vacuolar ATPase due to nucleotide binding. FEBS Lett 579:1961–1967

    PubMed  Google Scholar 

  • Aviezer-Hagai K, Padler-Karavani V, Nelson N (2003) Biochemical support for the V-ATPase rotary mechanism: antibody against HA-tagged Vma7p or Vma16p but not Vma10p inhibits activity. J Exp Biol 206:3227–3237

    PubMed  CAS  Google Scholar 

  • Bageshwar UK, Taneja-Bageshwar S, Moharram HM, Binzel ML (2005) Two isoforms of the A subunit of the vacuolar H+-ATPase in Lycopersicon esculentum: highly similar proteins but divergent patterns of tissue localization. Planta 220:632–643

    PubMed  CAS  Google Scholar 

  • Barkla BJ, Zingarelli L, Blumwald E, Smith J (1995) Tonoplast Na+/H+ antiport activity and its energetization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol 109:549–556

    PubMed  CAS  Google Scholar 

  • Bauerle C, Magembe C, Briskin DP (1998) Characterization of a red beet protein homologous to the essential 36-kilodalton subunit of the yeast V-type ATPase. Plant Physiol 117:859–867

    PubMed  CAS  Google Scholar 

  • Berkelmann T, Houtchens KA, DuPont FM (1994) Two cDNA clones encoding isoforms of the B subunit of the vacuolar ATPase from barley roots. Plant Physiol 104:287–288[AU1]

    Google Scholar 

  • Bowman EJ (1983) Comparison of the vacuolar membrane ATPase of Neurospora crassa with the mitochondrial and plasma membrane ATPases. J Biol Chem 258:15238–15244

    PubMed  CAS  Google Scholar 

  • Bremberger, LĂĽttge U (1991a) Dynamics of tonoplast proton pumps and other tonoplast proteins of Mesembryanthemum-crystallinum L. during the induction of crassulacean acid metabolism. Planta 188:575–580

    Google Scholar 

  • Bremberger, LĂĽttge U (1991b) Tonoplast ATPase of Mesembryanthemum-crystallinum – partial amino-acid-sequence of subunits induced during the transition from C3-photosynthesis to crassulacean acid metabolism. Comptes Rendus de L Academie des Sciences Serie III-Sciences De La Vie-Life Sciences 315:119–125

    Google Scholar 

  • Bremberger C, Haschke HP, LĂĽttge U (1988) Separation and purification of the tonoplast atpase and pyrophosphatase from plants with constitutive and inducible crassulacean acid metabolism. Planta 175:465–470

    CAS  Google Scholar 

  • Buhrmann G, Parker B, Sohn J, Rudolph J, Mattos C (2005) Structural mechanism of oxidative regulation of the phosphatase Cdc25B via an intramolecular disulfide bond. Biochem 44:5307–5316

    Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    PubMed  CAS  Google Scholar 

  • Charsky CM, Schumann NJ, Kane PM (2000) Mutational analysis of subunit G (Vma10p) of the yeast vacuolar H+-ATPase. J Biol Chem 275:37232–37239

    PubMed  CAS  Google Scholar 

  • Chen SH, Bubb MR, Yarmola EG, Zuo J, Jiang J, Lee BS, Lu M, Gluck SL, Hurst IR, Holliday LS (2004) Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem 279:7988–7998

    PubMed  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signalling. Cell 127:579–589

    PubMed  CAS  Google Scholar 

  • Choi KY, Ji YJ, Dhakal BK, Yu JR, Cho C, Song WK, Ahnn J (2003) Vacuolar-type H + -ATPase E subunit is required for embryogenesis and yolk transfer in Caenorhabditis elegans. Gene 311:13–23

    PubMed  CAS  Google Scholar 

  • Cohen A, Perzov N, Nelson H, Nelson N (1999) A novel family of yeast chaperones involved in the distribution of V-ATPase and other membrane proteins. J Biol Chem 274:26885–26893

    PubMed  CAS  Google Scholar 

  • Compton MA, Graham LA, Stevens TH (2006) Vma9p (subunit e) is an integral membrane V0 subunit of the yeast V-ATPase. J Biol Chem 281:15312–15319

    PubMed  CAS  Google Scholar 

  • Coskun U, Radermacher M, MĂĽller V, Ruiz T, GrĂĽber G (2004) Three-dimensional organization of the archaeal A1-ATPase from Methanosarcina mazei Gö1. J Biol Chem 279:22759–22764

    PubMed  CAS  Google Scholar 

  • Crider BP, Xie X-S (2003) Characterization of the functional coupling of bovine brain V-ATPase Effect of divalent cations, phospholipids, and subunit H (SFD). J Biol Chem 278:44281–44288

    PubMed  CAS  Google Scholar 

  • Cross RL, MĂĽller V (2004) The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio. FEBS Lett 576:1–4

    PubMed  CAS  Google Scholar 

  • Cross RL, Taiz L (1990) Gene duplication as a means for altering H + /ATP ratios during the evolution of FoF1 ATPases and synthases. FEBS Lett 259:227–229

    PubMed  CAS  Google Scholar 

  • Curtis KK, Kane PM (2002) Novel vacuolar H+-ATPase complexes resulting from overproduction of Vma5p and Vma13p. J Biol Chem 277:2716–2724

    CAS  Google Scholar 

  • Curtis KK, Francis SA, Oluwatosin Y, Kane PM (2002) Mutational analysis of the subunit C (Vma5p) of the yeast vacuolar H + -ATPase. J Biol Chem 277:8979–8988

    PubMed  CAS  Google Scholar 

  • Dettmer J, Schubert D, Calvo-Weimar O, Stierhof YD, Schmidt R, Schumacher K (2005) Essential role of the V-ATPase in male gametophyte development. Plant J 41:117–124

    PubMed  CAS  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    PubMed  CAS  Google Scholar 

  • Di Sansebastiano GP, Paris N, Marc-Martin S, Neuhaus JM (2001) Regeneration of a lytic central vacuole and of neutral peripheral vacuoles can be visualized by green fluorescent proteins targeted to either type of vacuoles. Plant Physiol 126:78–86

    PubMed  CAS  Google Scholar 

  • Dietz KJ, Heber U, Mimura T (1998) Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination. Biochim Biophys Acta 1373:87–92

    PubMed  CAS  Google Scholar 

  • Domgall I, Venzke D, LĂĽttge U, Ratajczak R, Böttcher B (2002) Three dimensional map of a plant V-ATPase based on electron microscopy. J Biol Chem 277:13115–13121

    PubMed  CAS  Google Scholar 

  • Drobny M, Schnölzer M, Fiedler S, LĂĽttge U, Fischer-Schliebs E, Christian AL, Ratajczak R (2002) Phenotypic subunit composition of the tobacco (Nicotiana tabacum L) vacuolar-type H+-translocating ATPase. Biochim Biophys Acta 1564:243–55

    PubMed  CAS  Google Scholar 

  • Drory O, Frolow F, Nelson N (2004) Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep 5:1148–1152

    PubMed  CAS  Google Scholar 

  • Dschida WJ, Bowman BJ (1995) The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J Biol Chem 270:1557–1563

    PubMed  CAS  Google Scholar 

  • Du J, Kean L, Allan AK, Southall TD, Davies SA, McInerny CJ, Dow JA (2006) The Sza mutations of the B subunit of the Drosophila vacuolar H+-ATPase identify conserved residues essential for function in fly and yeast. J Cell Sci 119:2542–2551

    PubMed  CAS  Google Scholar 

  • Epimashko S, Meckel T, Fischer-Schliebs E, LĂĽttge U, Thiel G (2004) Two functionally different vacuoles for static and dynamic purposes in one plant mesophyll leaf cell. Plant J 37:294–300

    PubMed  Google Scholar 

  • Feng Y, Forgac M (1992a) Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by sulfhydryl reagents. J Biol Chem 267:5817–5822

    CAS  Google Scholar 

  • Feng Y, Forgac M (1992b) A novel mechanism for regulation of vacuolar acidification. J Biol Chem 267:19769–19772

    CAS  Google Scholar 

  • Feng Y, Forgac M (1994) Inhibition of vacuolar H+-ATPase by disulfide bond formation between Cys254 and Cys 532 in subunit A. J Biol Chem 269:13224–13230

    PubMed  CAS  Google Scholar 

  • FĂ©thière J, Venzke D, Diepholz M, Seybert A, Geerlof A, Gentzel M, Wilm M, Böttcher B (2004) Building the stator of the yeast vacuolar ATPase. J Biol Chem 279:40670–40676

    PubMed  Google Scholar 

  • FĂ©thière J, Venzke D, Madden DR, Böttcher B (2005) Peripheral stator of the yeast V-ATPase: stochiometry and specificity of interaction between the EG complex and subunits C and H. Biochem 44:15906–15914

    Google Scholar 

  • Fischer-Schliebs E, Mariaux JB, LĂĽttge U (1997) Stimulation of H+-transport activity of vacuolar H+-ATPase by activation of H+-PPase in KalanchoĂ« blossfeldiana. Biol Plant 39:169–177

    CAS  Google Scholar 

  • Flannery AR, Graham LA, Stevens TH (2004) Topological characterization of the c, c’, and c” subunits of the vacuolar ATPase from the yeast Saccharomyces cerevisiae. J Biol Chem 279:39856–39862

    PubMed  CAS  Google Scholar 

  • Forgac M (1999) Structure and properties of the clathrin-coated vesicle and yeast vacuolar ATPase. J Bioenerg Biomembr 31:57–65

    PubMed  CAS  Google Scholar 

  • Gaxiola RA, Palmgreen MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    PubMed  CAS  Google Scholar 

  • Gayen S, Vivekanandan S, Biukovic G, GrĂĽber G, Yoon HS (2007) NMR solution structure of subunit F of the methanogenic A1AO adenosine triphosphate synthase and its interaction with the nucleotide-binding subunit B. Biochemistry 46:11684–11694

    PubMed  CAS  Google Scholar 

  • Gibson LC, Cadwallader G, Finbow ME (2002) Evidence that there are two copies of subunit c” in V0 complexes in the vacuolar H+-ATPase. Biochem J 366:911–919

    PubMed  CAS  Google Scholar 

  • Gogarten JP, Fichmann J, Braun Y, Morgan L, Styles P, Taiz SL, Delapp K, Taiz L (1992a) The use of antisense mRNA to inhibit the tonoplast H+ATPase in carrot. Plant Cell 4:851–864

    CAS  Google Scholar 

  • Gogarten JP, Starke T, Kibak H, Fishman J, Taiz L (1992b) Evolution and isoforms of V-ATPase subunits. J Exp Biol 172:137–147

    CAS  Google Scholar 

  • Grabe M, Wang H, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. Biophys J 78:2798–2813

    PubMed  CAS  Google Scholar 

  • Graham LA, Hill KJ, Stevens TH (1998) Assembly of the vacuolar H+-ATPase occurs in the endoplasmic reticulum and requires a Vma12p/Vma22p assembly complex. J Cell Biol 142:39–49

    PubMed  CAS  Google Scholar 

  • Graham LA, Powell B, Stevens TH (2000) Composition and assembly of the yeast vecuolar H+-ATPase complex. J Exp Biol 203:61–70

    PubMed  CAS  Google Scholar 

  • Graham LA, Flannery AR, Stevens TH (2003) Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr 35:301–312[AU2]

    PubMed  CAS  Google Scholar 

  • GrĂĽber G (2005) Structural features and nucleotide-binding capability of the C subunit are integral to the regulation of the eukaryotic V1Vo ATPases. Biochem Soc Trans 33:883–885

    PubMed  Google Scholar 

  • GrĂĽber G, Radermacher M, Ruiz T, Godovac-Zimmermann J, Canas B, Kleine-Kohlbrecher D, Huss M, Harvey WR, Wieczorek H (2000) Three dimensional structure and subunit topology of the V1 ATPase from Manduca sexta midgut. Biochemistry 39:8609–8616

    PubMed  Google Scholar 

  • GrĂĽber G, Wieczorek H, Harvey WR, MĂĽller V (2001) Structure-function relationship of A-, F- and V-ATPases. J Exp Biol 204:2597–2605

    PubMed  Google Scholar 

  • Hager A, Lanz C (1989) Essential sulfhydryl groups in the catalytic center of the tonoplast H+-ATPase from coleoptiles of Zea mays L as demonstrated by the biotin-streptavidin-peroxidase system. Planta 180:116–122

    CAS  Google Scholar 

  • Hanitzsch M, Schnitzer D, Seidel T, Golldack D, Dietz KJ (2007) Transcript level regulation of the vacuolar H(+)-ATPase subunit isoforms VHA-a, VHA-E and VHA-G in Arabidopsis thaliana. Mol Membr Biol 24:507–508

    PubMed  CAS  Google Scholar 

  • Harrison M, Durose L, Song CF, Barrat E, Trinick J, Jones R, Findlay JBC (2003) Structure and function of the vacuolar H+-ATPase: moving from low-resolution models to high resolution structures. J Bioenerg Biomembr 35:337–345

    PubMed  CAS  Google Scholar 

  • Hernando N, Bartkiewicz M, Collin-Osdoby P, Osdoby P, Baron P (1995) Alternative splicing generates a second isoform of the catalytic A subunit of the vacuolar H(+)-ATPase. Proc Natl Acad Sci USA 92:6087–6091

    PubMed  CAS  Google Scholar 

  • Hill KJ, Stevens TH (1994) Vma21p is a yeast membrane protein retained in the endoplasmic reticulum by a di-lysine motif and is required for the assembly of the vacuolar H(+)-ATPase complex. Mol Biol Cell 5:1039–1050

    PubMed  CAS  Google Scholar 

  • Hirata T, Iwamoto-Kihara A, Sun-Wada G-H, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and c subunits. J Biol Chem 278:23714–23719

    PubMed  CAS  Google Scholar 

  • Holliday LS, Lu M, Lee BS, Nelson RD, Solivan S, Zhang L, Gluck SL (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275:32331–32337

    PubMed  CAS  Google Scholar 

  • Holliday LS, Bubb MR, Jiang J, Hurst IR, Zuo J (2005) Interactions between vacuolar H + -ATPases and microfilaments in osteoclasts. J Bioenerg Biomembr 37:419–423

    PubMed  CAS  Google Scholar 

  • Hong-Hermesdorf A, BrĂĽx A, GrĂĽber A, GrĂĽber G, Schumacher K (2006) A WNK-kinase binds and phosphorylates V-ATP subunit C. FEBS Lett 580:932–939

    PubMed  CAS  Google Scholar 

  • Imamura H, Nakano M, Noji H, Muneyuki E, Ohkuma S, Yoshida M, Yokoyama K (2003) Evidence for rotation of V1-ATPase. Proc Natl Acad Sci USA 100:2312–2315

    PubMed  CAS  Google Scholar 

  • Imamura H, Funamoto S, Yoshida M, Yokoyama K (2006) Reconstitution in vitro of V1 complex of Thermus thermophilus V-ATPase revealed that ATP binding to the A subunit is crucial for V1 formation. J Biol Chem 281:38582–38591

    PubMed  CAS  Google Scholar 

  • Inoue T, Forgac M (2005) Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. J Biol Chem 280:27896–27903

    PubMed  CAS  Google Scholar 

  • Iwata M, Imamura H, Stambouli E, Ikeda C, Tamakoshi M, Nagata K, Makyio H, Hankamer B, Barber J, Yoshida M, Yokoyama K, Iwata S (2004) Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc Natl Acad Sci USA 101:59–64

    PubMed  CAS  Google Scholar 

  • Jaquinod M, Villiers F, Kieffer-Jaquinod S, Huqouvieux V, Bruley C, Garin J, Bourquiqnon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412

    PubMed  CAS  Google Scholar 

  • Jones RP, Durose LJ, Findlay JB, Harrison MA (2005) Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Biochem 44:3933–3941

    CAS  Google Scholar 

  • Kader MA, Seidel T, Golldack D, Lindberg S (2006) Expression of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L) cultivars. J Exp Bot 57:4257–4268

    PubMed  CAS  Google Scholar 

  • Kader MA, Lindberg S, Seidel T, Golldack D, Yemelyamov V (2007) Sodium sensing induces different changes in free cytosolic calcium concentration and pH in salt-tolerant and –sensitive rice cultivars. Physiol Plant 130: 99–111[AU3]

    CAS  Google Scholar 

  • Kane PM (1995) Disassembly and reassembly of the yeast H(+)-ATPase in vivo. J Biol Chem 270:17025–17032

    PubMed  CAS  Google Scholar 

  • Kane PM (2000) Regulation of V-ATPases by reversible disassembly. FEBS Lett 469:137–141[AU4]

    PubMed  CAS  Google Scholar 

  • Kane PM, Smardon AM (2003) Assembly and regulation of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 35:313–321

    PubMed  CAS  Google Scholar 

  • Kane PM, Tarsio M, Liu J (1999) Early steps in assembly of the yeast vacuolar H+-ATPase. J Biol Chem 274:17275–17283

    PubMed  CAS  Google Scholar 

  • Kawamura Y, Arakawa K, Maeshima M, Yoshida S (2000) Tissue specificity of E subunit isoforms of plant vacuolar H+-ATPase and existence of isotype enzymes. J Biol Chem 275:6515–6522

    PubMed  CAS  Google Scholar 

  • Kawamura Y, Arakawa K, Maeshima M, Yoshida S (2001) ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase. Eur J Biochem 268:2801–2809

    PubMed  CAS  Google Scholar 

  • Kawasaki-Nishi S, Nishi T, Forgac M (2001a) Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc Natl Acad Sci USA 98:12397–12402

    CAS  Google Scholar 

  • Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001b) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP-hydrolysis. J Biol Chem 276:47411–47420

    CAS  Google Scholar 

  • Kawasaki-Nishi S, Nishi T, Forgac M (2003a) Interacting helical surfaces of the transmembrane segments of subunits a and c’ of the yeast V-ATPase defined by disulfide-mediated cross-linking. J Biol Chem 278:41908–41913

    CAS  Google Scholar 

  • Kawasaki-Nishi S, Nishi T, Forgac M (2003b) Proton translocation driven by ATP-hydrolysis in V-ATPases. FEBS Lett 545:76–85

    CAS  Google Scholar 

  • Kettner C, Bertl A, Obermeyer G, Slayman C, Bihler H (2003) Electrophysiological analysis of the yeast V-type proton pump: variable coupling ratio and proton shunt. Biophys J 85:3730–3738

    PubMed  CAS  Google Scholar 

  • Klink R, Haschke HP, Kramer D, LĂĽttge U (1997) Membrane particles, proteins and ATPase activity of tonoplast vesicles of Mesembryanthemum crystallinum in the C3 and CAM-state. Botanica Acta 103:24–31

    Google Scholar 

  • Klobus G, Janicka-Russak M (2004) Modulation by cytosolic components of proton pump activities in plasma membrane and tonoplast from Cucumis sativus roots during salt stress. Physiol Plant 121: 84–92

    PubMed  CAS  Google Scholar 

  • Kluge C, Golldack D, Dietz KJ (1999) Subunit D of the vacuolar H+-ATPase of Arabidopsis thaliana. Biochim Biophys Acta 1419:105–110

    PubMed  CAS  Google Scholar 

  • Kluge C, Lahr J, Hanitzsch M, Bolte S, Golldack D, Dietz KJ (2003a) New insight into the structure and regulation of the plant vacuolar V-ATPase. J Bioenerg Biomembr 35:377–388

    CAS  Google Scholar 

  • Kluge C, Lamkemeyer P, Tavakoli N, Golldack D, Kandlbinder A, Dietz KJ (2003b) cDNA cloning of 12 subunits of the V-type ATPase from Mesembryanthemum crystallinum and their expression under stress. Mol Membr Biol 20:171–183[AU5]

    CAS  Google Scholar 

  • Kluge C, Seidel T, Bolte S, Sharma SS, Hanitzsch M, Satiat-Jeunemaitre B, Ross J, Sauer M, Golldack D, Dietz KJ (2004) Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biol 5:29

    PubMed  Google Scholar 

  • Klychnikov OI, Li KW, Lill H, de Boer AH (2007) The V-ATPase from etiolated barley (Hordeum vulgare L) shoots is activated by blue light and interacts with 14–3–3 proteins. J Exp Bot 58:1013–1023

    PubMed  CAS  Google Scholar 

  • Konishi H, Yamane H, Maeshima M, Komatsu S (2004) Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedlings. Plant Mol Biol 56:839–848

    PubMed  CAS  Google Scholar 

  • Konishi H, Maeshima M, Komatsu S (2005) Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin. J Proteome Res 4:1775–1780

    PubMed  CAS  Google Scholar 

  • Krisch R, Rakowski K, Ratajczak R (2000) Processing of V-ATPase subunit B of Mesembryanthemum crystallinum L. is mediated in vitro by a protease and/or reactive oxygen species. Biol Chem 381:583–592

    PubMed  CAS  Google Scholar 

  • Landolt-Marticorena C, Kahr WH, Zawarinski P, Correa J, Manolson MF (1999) Substrate and inhibitor- induced conformational changes in the yeast V-ATPase provide evidence for communication between the catalytic and proton-translocating sectors. J Biol Chem 274:26057–26064

    PubMed  CAS  Google Scholar 

  • Landolt-Marticorena C, Williams KM, Correa J, Chen W, Manolson MF (2000) Evidence that the NH2 terminus of Vph1p, an integral subunit of the vector V0 sector of the yeast V-ATPase, interacts directly with the Vma1p and Vma13p subunits of the V1 sector. J Biol Chem 275:15449–15457

    PubMed  CAS  Google Scholar 

  • Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, Pignolo RJ, Koczon-Jaremko B, Lorenzo J, Choi Y (2006) V-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 12:1403–1409

    PubMed  CAS  Google Scholar 

  • Leng XH, Nishi T, Forgac M (1999) Transmembrane topology of the 100-kDa a subunit (Vph1p) of the yeast vacuolar proton-translocating ATPase. J Biol Chem 274:14655–14661

    PubMed  CAS  Google Scholar 

  • Li Z, Zhang X (2004) Electron-microscopic structure of the V-ATPase from mung bean. Planta 219:948–954

    PubMed  CAS  Google Scholar 

  • Li X, Su RT, Hsu HT, Sze H (1998) The molecular chaperone calnexin associates with the vacuolar H+-ATPase from oat seedlings. Plant Cell 10: 119–130

    PubMed  CAS  Google Scholar 

  • Liu GS, Chen S, Chen J, Wang XC (2004) Identification of the phosphorylation site of the V-ATPase subunit a in maize roots. Acta Bot Sinica 46:428–435

    CAS  Google Scholar 

  • Liu J, Brown CR, Chiang HL (2005b) Degradation of the gluconeogenic enzyme fructose-1, 6-bisphosphatase is dependent on the vacuolar ATPase. Autophagy 1:146–156

    CAS  Google Scholar 

  • Liu M, Tarsio M, Charsky CM, Kane PM (2005a) Structural and functional separation of the N- and C-terminal domains of the yeast V-ATPase subunit H. J Biol Chem 280:36978–36985

    CAS  Google Scholar 

  • Lokanath NK, Matsuura Y, Kuroishi C, Takahashi N, Kunishima N (2007) Dimeric core structure of modular stator subunit E of archael H+-ATPase. J Mol Biol 366:933–944[AU6]

    PubMed  CAS  Google Scholar 

  • Lu M, Holliday LS, Zhang L, Dunn Jr WA, Gluck SL (2001) Interaction between aldolase and vacuolar H+-ATPase. J Biol Chem 276:30407–30413

    PubMed  CAS  Google Scholar 

  • Lu M, Vergara S, Zhang L, Holliday LS, Aris J, Gluck SL (2002) The amino-terminal domain of the E subunit of vacuolar H+-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function. J Biol Chem 277:38409–38415

    PubMed  CAS  Google Scholar 

  • Lu M, Sautin YY, Holliday LS, Gluck SL (2004) The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase. J Biol Chem 279:8732–8739[AU7]

    PubMed  CAS  Google Scholar 

  • Lu M, Ammar D, Ives H, Albrecht F, Gluck SL (2007) Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 282: 24495–24503

    PubMed  CAS  Google Scholar 

  • Ludwig J, Kerscher S, Brandt U, Pfeiffer K, Getlawi F, Apps DK, Schagger H (1998) Identification and characterization of a novel 92-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem 273:10939–10947

    PubMed  CAS  Google Scholar 

  • LĂĽttge[AU8] U, Fischer-Schliebs E, Ratajczak R (2001) The H+-pumping V-ATPase of higher plants: a versatile eco-enzyme in response to environmental stress. Cell Biol Mol Lett 6:356–361

    Google Scholar 

  • Maegawa Y, Morita H, Iyaguchi D, Yao M, Watanabe N, Tanaka I (2006) Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase from Pyrococcus horikoshii reveals a novel domain related to the peripheral stalk. Acta Crystallogr D Biol Crystallogr 62:483–488

    PubMed  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    PubMed  CAS  Google Scholar 

  • Maeshima[AU9] M (2001) Tonoplast transporters: Organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    PubMed  CAS  Google Scholar 

  • Magnotta SM, Gogarten JP (2002) Multi site polyadenylation and transcriptional response to stress of a vacuolar type H+-ATPase subunit A gene in Arabidopsis thaliana. BMC Plant Biol 2:3

    PubMed  Google Scholar 

  • Malkus P, Graham LA, Stevens TH, Schekman R (2004) Role of the Vma21p in assembly and transport of the yeast vacuolar ATPase. Mol Biol Cell 15:5075–5091

    PubMed  CAS  Google Scholar 

  • Manolson MF, Rea PA, Poole RJ (1985) Identification of 3-O-(4-benzoyl)benzoyladenosine 5’′-triphosphate- and N,N’-dicyclohexylcarbodiimide-binding subunits of a higher plant H+-translocating tonoplast ATPase. J Biol Chem 260:12273–12279

    PubMed  CAS  Google Scholar 

  • Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269:14064–14074

    PubMed  CAS  Google Scholar 

  • Mariaux JB, Fischer-Schliebs E, Luttge U, Ratajczak R (1997) Dynamics of activity and structure of the tonoplast vacuolar-type H+-ATPase in plants with differing CAM expression and in a C-3 plant under salt stress. Protoplasma 196:181–189

    CAS  Google Scholar 

  • Marshansky V (2007) The-V-ATPase a2-subunit as a putative endosomal pH-sensor. Biochem Soc Trans 35:1092–1099

    PubMed  CAS  Google Scholar 

  • Matsuoka K, Higuchi T, Maeshima M, Nakamura K (1997) A vacuolar-type H+-ATPase in a nonvacuolar organelle is required for the sorting of soluble vacuolar protein precursors in tobacco cells. Plant Cell 9:533–546

    PubMed  CAS  Google Scholar 

  • Mayer A (2001) What drives membrane fusion in eukaryotes? Trends Biochem Sci 26(12):717–723

    PubMed  CAS  Google Scholar 

  • McCubbin AG, Ritchie SM, Swanson SJ, Gilroy S (2004) The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. Plant J 39:206–218

    PubMed  CAS  Google Scholar 

  • Merzendorfer H, Graf R, Huss M, Harvey WR, Wieczorek H (1997) Regulation of proton-translocating V-ATPases. J Exp Biol 200:225–235

    PubMed  CAS  Google Scholar 

  • Merzendorfer H, Huss M, Schmid R, Harvey WR, Wieczorek H (1999) A novel insect V-ATPase subunit M97 is glycosylated extensively. J Biol Chem 274:17372–17378

    PubMed  CAS  Google Scholar 

  • MĂĽller ML, Taiz L (2002) Regulation of the lemon-fruit V-ATPase by variable stoichiometry and organic acids. J Membr Biol 185:209–220

    PubMed  Google Scholar 

  • MĂĽller M, Irkens-Kiesecker U, Rubinstein B, Taiz L (1996) On the mechanism of hyperacidification in lemon. Comparison of the vacuolar H(+)-ATPase activities of fruits and epicotyls. J Biol Chem 271:1916–1924

    Google Scholar 

  • MĂĽller O, Bayer MJ, Peters C, Andersen JS, Mann M, Mayer A (2002) The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation. EMBO J 21:259–269

    PubMed  Google Scholar 

  • MĂĽller O, Neumann H, Bayer MJ, Mayer A (2003) Role of the Vtc proteins in V-ATPase stability and membrane trafficking. J Cell Sci 116:1107–1115

    PubMed  Google Scholar 

  • Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci USA 87:3503–3507.

    PubMed  CAS  Google Scholar 

  • Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H (2000) The cellular biology of proton-motive force generated by V-ATPases. J Exp Biol 203:89–95

    PubMed  CAS  Google Scholar 

  • Neuhaus JM (2000) GFP as a marker for vacuoles in plants. Ann Plant Rev 5: 254–269

    CAS  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases – nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    PubMed  CAS  Google Scholar 

  • Nishi T, Kawasaki-Nishi S, Forgac M (2001) Expression and localization of the mouse homologue of the yeast V-ATPase 21-kDa subunit “c” (Vma16p). J Biol Chem 276:34122–34130

    PubMed  CAS  Google Scholar 

  • Nishi T, Kawasaki-Nishi S, Forgac M (2003a) The first putative transmembrane segment of subunit “c” (Vma16p) of the yeast V-ATPase is not necessary for function. J Biol Chem 278:5821–5827

    CAS  Google Scholar 

  • Nishi T, Kawasaki-Nishi S, Forgac M (2003b) Expression and function of the mouse V-ATPase d subunit isoforms. J Biol Chem 278:46396–46402[AU10]

    CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments.Plant Physiol 109:735–742[AU11]

    PubMed  CAS  Google Scholar 

  • Ohira M, Smardon AM, Charsky CM, Liu J, Tarsio M, Kane PM (2006) The E and G subunits of the yeast V-ATPase interact tightly and are both present at more than one copy per V1 complex. J Biol Chem 281:22752–22760

    PubMed  CAS  Google Scholar 

  • Owegi MA, Pappas DL, Finch MW Jr, Bilbo SA, Resendiz CA, Jaquemin LJ, Warrier A, Trombley JD, McCulloch KM, Margalef KL, Mertz MJ, Storms JM, Damin CA, Parra KJ (2006) Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. J Biol Chem 281:30001–30014

    PubMed  CAS  Google Scholar 

  • Padmanaban S, Lin X, Perera I, Kawamura Y, Sze H (2004) Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi. Plant Physiol 134:1514–1526

    PubMed  CAS  Google Scholar 

  • Pantoja O, Barkla BJ, Vera-Estrella R (2000) Ion channels and ion co-transporters in the tonoplast. Ann Plant Rev (5), DG Robinson, JC Rogers (Eds). Sheffield Academic Press, UK: 1–19[AU12]

    Google Scholar 

  • Paris N, Rogers SW, Jiang L, Kirsch T, Beevers L, Phillips TE, Rogers JC (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115:29–39

    PubMed  CAS  Google Scholar 

  • Parra KJ, Kane PM (1998) Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 18:7064–7074

    PubMed  CAS  Google Scholar 

  • Parra KJ, Keenan KL, Kane PM (2000) The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1-complexes. J Biol Chem 275:21761–21767

    PubMed  CAS  Google Scholar 

  • Peters C, Bayer MJ, BĂĽhler S, Andersen JS, Mann M, Mayer A (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409:581–588

    PubMed  CAS  Google Scholar 

  • Powell B, Graham LA, Stevens TH (2000) Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J Biol Chem 275:23654–23660

    PubMed  CAS  Google Scholar 

  • Qi J, Forgac M (2007) Cellular environment is important in controlling V-ATPase dissociation and its dependency on activity. J Biol Chem 282:24743–24751

    PubMed  CAS  Google Scholar 

  • Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta 1465:17–36

    PubMed  CAS  Google Scholar 

  • Ratajczak R, Richter J, LĂĽttge U (1994) Adaptation of the tonoplast V-type H+-ATPase of Mesembryanthemum crystallinum to salt stress C3-CAM transition and plant age. Plant Cell Environm 17:1101–1112

    CAS  Google Scholar 

  • Robinson DG, Haschke HP, Hinz G, Hoh B, Maeshima M, Marty F (1996) Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Planta 198:95–103

    CAS  Google Scholar 

  • Rockel B, Ratajczak R, Becker A, LĂĽttge U (1994) Changed densities and diameters of intra-membrane tonoplast particles of Mesembryanthemum crystallinum in correlation with NaCl-induced CAM. J Plant Physiol 143:318–324

    CAS  Google Scholar 

  • Sagermann M, Stevens TH, Matthews BW (2001) Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98:7134–7139

    PubMed  CAS  Google Scholar 

  • Sambade M, Kane PM (2004) The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. J Biol Chem 279:17361–17365

    PubMed  CAS  Google Scholar 

  • Sapra R, Bagramyan K, Adams MW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 100:7545–7550

    PubMed  CAS  Google Scholar 

  • Schäfer IB, Bailer SM, DĂĽser MG, Börsch M, Bernal RA, Stock D, GrĂĽber G (2006) Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Gö1: implications of nucleotide-binding differences in the major A1Ao subunits A and B. J Mol Biol 358:725–740

    PubMed  Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13:3259–3270

    PubMed  CAS  Google Scholar 

  • Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D (2004) Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells. J Biotech 112(1–2): 165–175

    CAS  Google Scholar 

  • Seidel T, Golldack D, Dietz KJ (2005) Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements. FEBS Lett 579:4374–4382

    PubMed  CAS  Google Scholar 

  • Seidel T, Schnitzer D, Golldack D, Dietz K.J. (2008) Organelle-specific isoenzymes of plant V-ATPae as revealed by in vivo-FRET analysis. submitted

    Google Scholar 

  • Seol JH, Shevchenko A, Shevchenko A, Deshaies RJ (2001) Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat Cell Biol 3:384–391

    PubMed  CAS  Google Scholar 

  • Shao E, Forgac M (2004) Involvement of the nonhomologues region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation. J Biol Chem 279:48663–48670

    PubMed  CAS  Google Scholar 

  • Shao E, Nishi T, Kawasaki-Nishi S, Forgac M (2003) Mutational analysis of the non-homologous region of subunit A of the yeast V-ATPase. J Biol Chem 278:12985–12991

    PubMed  CAS  Google Scholar 

  • Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki K, Maeshima M, Yokota A, Tomizawa K, Mimura T: isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45:672–683

    Google Scholar 

  • Sipos G, Brickner JH, Brace EJ, Chen L, Rambourg A, Kepes F, Fuller RS (2004) Soi3p/Rav1p functions at the early endosome to regulate endocytic trafficking to the vacuole and localization of trans-Golgi network transmembrane proteins. Mol Biol Cell 15:3196–3209

    PubMed  CAS  Google Scholar 

  • Smardon AM, Kane PM (2007) RAVE is essential for the efficient assembly of the C-subunit with the vacuolar H+-ATPase. J Biol Chem 282:26185–26194

    PubMed  CAS  Google Scholar 

  • Smardon AM, Tarsio M, Kane PM (2002) The RAVE complex is essential for stable assembly of the yeast V-ATPase. J Biol Chem 277:13831–13839

    PubMed  CAS  Google Scholar 

  • Stevens TH, Forgac M (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol 13:779–808

    PubMed  CAS  Google Scholar 

  • Strompen G, Dettmer J, Stierhof YD, Schuhmacher K, JĂĽrgens G, Mayer U (2005) Arabidopsis vacuolar H+-ATPase subunit E isoform 1 is required for Golgi organization and vacuolar function in embryogenesis. Plant J 41:125–132

    PubMed  CAS  Google Scholar 

  • Sumner JP, Dow JA, Earley FG, Klein U, Jager D, Wieczorek H (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653

    PubMed  CAS  Google Scholar 

  • Sun-Wada [AU14]GH, Wada Y, Futai M (2003) Vacuolar H+ pumping ATPases in luminal acidic organelles and extracellular compartments: Common rotational mechanism and diverse physiological roles. J Bioenerg Biomembr 35:347–358

    PubMed  CAS  Google Scholar 

  • Sze[AU15] H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell 11:677–690

    PubMed  CAS  Google Scholar 

  • Sze H, Schumacher K, MĂĽller ML, Padmanaban S, Taiz L (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci 7:157–161

    PubMed  CAS  Google Scholar 

  • Taiz L, Nelson H, Maggert K, Morgan L, Yatabe B, Taiz SL, Rubinstein B, Nelson N (1994) Functional analysis of conserved cysteine residues in the catalytic subunit of the yeast vacuolar H(+)-ATPase. Biochim Biophy Acta 1194:329–334

    CAS  Google Scholar 

  • Tavakoli N, Eckerskorn C, Golldack D, Dietz KJ (1999) Subunit C of the vacuolar H+-ATPase of Hordeum vulgare. FEBS Lett 456:68–72

    PubMed  CAS  Google Scholar 

  • Tavakoli N, Kluge C, Golldack D, Mimura T, Dietz KJ (2001) Reversible redox control of plant vacuolar H+-ATPase is related to disulfide bridge formation in subunit E as well as subunit A. Plant J 28:51–59

    PubMed  CAS  Google Scholar 

  • Thaker YR, Roesle M, GrĂĽber G (2007) The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. J Bioenerg Biomembr 39:275–289

    PubMed  CAS  Google Scholar 

  • Tomashek JJ, Sonnenburg JL, Artimovich JM, Klionsky DJ (1996) Resolution of subunit interactions and cytoplasmic subcomplexes of the yeast vacuolar proton-translocating ATPase. J Biol Chem 271:10397–10404

    PubMed  CAS  Google Scholar 

  • Tomashek JJ, Graham LA, Hutchins MU, Stevens TH, Klionsky DJ (1997) V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase. J Biol Chem 272:26787–26793

    PubMed  CAS  Google Scholar 

  • Tyagi[AU16] W, Rajagopal D, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Cloning and regulation of a stress-regulated Pennisetum glaucum vacuolar ATPase c gene and characterization of its promotor that is expressed in shoot hairs and floral organs. Plant Cell Physiol 46: 1411–1422

    PubMed  CAS  Google Scholar 

  • Vasileya E, Liu Q, MacLeod KJ, Baleja JD, Forgac M (2000) Cysteine scanning mutagenesis of the noncatalytic nucleotide binbding site of the yeast V-ATPase. J Biol Chem 275: 255–260

    Google Scholar 

  • Venzke D, Domgall I, Köcher T, FĂ©thière J, Fischer S, Böttcher B (2005) Elucidation of the stator organization in the V-ATPase of Neurospora crassa. J Mol Biol 349:659–669

    PubMed  CAS  Google Scholar 

  • Vitavska O, Wieczorek H, Merzendorfer H (2003) A novel role for subunit C in mediating binding of the H+-ATPase to the actin cytoskeleton. J Biol Chem 278:18499–18505

    PubMed  CAS  Google Scholar 

  • Vitavska O, Merzendorfer H, Wieczorek H (2005) The V-ATPase subunit C binds to polymeric F-actin as well as to monomeric G-actin and induces cross-linking of actin filaments. J Biol Chem 280:1070–1076

    PubMed  CAS  Google Scholar 

  • Vos WL, Vermeer LS, Hemminga MA (2007) Conformation of a peptide encompassing the proton translocation channel of vacuolar H(+)-ATPase. Biophys J 92:138–146

    PubMed  CAS  Google Scholar 

  • Wang Y, Inoue T, Forgac M (2004) TM2 but not TM4 of subunit c” interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking. J Biol Chem 279:44628–44638

    PubMed  CAS  Google Scholar 

  • Whyteside[AU17] G, Gibson L, Scott M, Finbow ME (2005) Assembly of the yeast vacuolar H+-ATPase and ATP hydrolysis occurs in the absence of subunit c”. FEBS Lett 579:2981–2985

    PubMed  CAS  Google Scholar 

  • Wieczorek H, GrĂĽber G, Harvey WR, Huss M, Merzendorfer H, Zeiske W (2000) Structure and regulation of insect plasma membrane H(+)V-ATPase. J Exp Biol 203:127–135

    PubMed  CAS  Google Scholar 

  • Wilkens S, Inoue T, Forgac M (2004) Three-dimensional structure of the vacuolar ATPase from electron microscopy. J Biol Chem 279:41942–41949

    PubMed  CAS  Google Scholar 

  • Xu T, Forgac M (2000) Subunit D (Vma8p) of the yeast vacuolar H+-ATPase plays a role in coupling of proton transport and ATP-hydrolysis. J Biol Chem 275:22075–22081[AU18]

    PubMed  CAS  Google Scholar 

  • Xu T, Forgac M (2001) Microtubules are involved in glucose-dependent dissociation of the yeast vacuolar [H+]-ATPase in vivo. J Biol Chem 276:24855–24861

    PubMed  CAS  Google Scholar 

  • Xu T, Vasiliyeva E, Forgac M (1999) Subunit interactions in the clathrin-coated vesicle vacuolar H+-ATPase complex. J Biol Chem 274:28909–28915

    PubMed  CAS  Google Scholar 

  • Yokoyama K, Nakano M, Imamura H, Yoshida M, Tamakoshi M (2003) Rotation of the proteolipidring in the V-ATPase. J Biol Chem 278:24255–24258

    PubMed  CAS  Google Scholar 

  • Zhang Z, Inoue T, Forgac M, Wilkens S (2006) Localization of subunit C (Vma5p) in the yeast vacuolar ATPase by immuno electron microscopy. FEBS Lett 580: 2006–2010

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Seidel .

Editor information

Ulrich LĂĽttge Wolfram Beyschlag Burkhard BĂĽdel Dennis Francis

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seidel, T. (2009). Structure and Regulation of Plant Vacuolar H+-ATPase. In: LĂĽttge, U., Beyschlag, W., BĂĽdel, B., Francis, D. (eds) Progress in Botany. Progress in Botany, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68421-3_5

Download citation

Publish with us

Policies and ethics