Skip to main content

Experimental Thermochemistry of Heterocycles and Their Aromaticity: A Study of Nitrogen, Oxygen, and Sulfur Derivatives of Indane and Indene

  • Chapter
Aromaticity in Heterocyclic Compounds

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 19))

Abstract

In the current chapter the study of aromaticity is limited to thermochemical concerns (just to those derived from enthalpies of formation in gaseous phase) and to heterocycles containing nitrogen, oxygen, and sulfur as found in a ring (or collection of rings) for which there is unbroken π bonding between the constituent atoms.

We will take a semiempirical approach using numerous molecules, models, assumptions, and estimates rather than doing new calorimetric experiments and/or quantum chemical calculations. Indeed, we will also test what is probably the simplest assumption—that (4n + 2) π electrons found within a conjugated ring species is expected to result in enhanced stability and that this compound is called “aromatic.” We will consider the dihydroindene (indane) skeleton composed of a benzene ring fused to a nonaromatic five-membered ring that lacks additional double bonds, and will use this carbocyclic hydrocarbon with X = Y = Z = CH2 as a paradigm for many heterocyclic derivatives for which the possible aromaticity is of relevance to the current chapter. Similarly we use indene with {−X−Y−} = {−CH = CH−}, Z = CH 2 for a variety of unsaturated heterocycles of interest here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wakita K, Tokitoh N, Okazaki R, Nagase S, Schleyer PvR, Jiao H (1999) J Am Chem Soc 121: 11336

    Article  CAS  Google Scholar 

  2. Schleyer PvR, Puehlhofer F (2002) Org Lett 4: 2873

    Article  CAS  Google Scholar 

  3. De Proft F, Geerlings P (2004) Phys Chem Chem Phys 6:242

    Article  CAS  Google Scholar 

  4. Hosmane RS, Liebman JF (1991) Tetrahedron Lett 32:3949

    Article  CAS  Google Scholar 

  5. Hosmane RS, Liebman JF (1992) Tetrahedron Lett 33:2303

    Article  CAS  Google Scholar 

  6. Skancke A, Hosmane RS, Liebman JF (1998) Acta Chem Scand 52:967

    Article  CAS  Google Scholar 

  7. Liebman JF (1997) Thermochemistry of dienes and polyenes. In: Rappoport Z (ed) The chemistry of dienes and polyenes, vol 1. The chemistry of functional groups, suppl. A2. Wiley, Chichester, p 67

    Chapter  Google Scholar 

  8. Bartmess JE (1982) J Am Chem Soc 104:335

    Article  CAS  Google Scholar 

  9. Bally T, Hasselmann D, Loosen K (1985) Helv Chim Acta 68:345

    Article  CAS  Google Scholar 

  10. Fang W, Rogers DW (1992) J Org Chem 57:2294

    Article  CAS  Google Scholar 

  11. Turner RB, Mallon BJ, Tichy M, Doering WvE, Roth WR, Schroder G (1973) J Am Chem Soc 95:8605

    Article  CAS  Google Scholar 

  12. Kreysig VD, Friebe R, Aparowsky H, Schirmer J (1968) J Prakt Chem 37:329

    Article  CAS  Google Scholar 

  13. Rogers DW (2006) Heats of hydrogenation: experimental and computational hydrogen thermochemistry of organic compounds. World Scientific, New Jersey

    Google Scholar 

  14. Wiberg KB, Nakaji DY, Morgan KM (1993) J Am Chem Soc 115:3527

    Article  CAS  Google Scholar 

  15. Pedley JB (1994) Thermochemical data and structures of organic compounds, TRC data series, vol 1. Thermodynamic Research Center, College Station, TX

    Google Scholar 

  16. Stohmann F (1892) Zeit Phys Chem 10:410

    Google Scholar 

  17. Liebman JF, Perks HM (1994) Thermochemistry of enamines. In: Rappoport Z (ed) The chemistry of enamines. The chemistry of functional groups. Wiley, Chichester, p 255

    Google Scholar 

  18. Fowler FW (1972) J Am Chem Soc 94:5926

    Article  CAS  Google Scholar 

  19. Zhu XQ, Cao L, Liu Y , Yang Y , Lu JY, Wang JS, Cheng JP (2003) Chem Eur J 9:3937

    Article  CAS  Google Scholar 

  20. Cook MJ, Katritzky AR, Linda P, Tack RD (1972) J Chem Soc Perkin Trans II, p 1295

    Google Scholar 

  21. Slayden SW, Liebman JF (1997) Thermochemistry of olefins, carbonyl compounds and imines. In: Patai S (ed) The chemistry of doubly-bonded functional groups. The chemistry of functional groups, suppl. A3. Wiley, Chichester, p 537

    Chapter  Google Scholar 

  22. Verevkin SP (2000) J Therm Anal Calorim 60:437

    Article  CAS  Google Scholar 

  23. Coates GE, Sutton LE (1948) J Chem Soc 1187

    Google Scholar 

  24. Kirchner JJ, Acree WE Jr, Pilcher G, Li S-F (1986) J Chem Thermodyn 18:793

    Article  CAS  Google Scholar 

  25. Bartmess JE, Irikura KK (2007) (special eds) Int J Mass Spectrom 267:1

    Article  CAS  Google Scholar 

  26. Verevkin SP, Welle FM (1998) Struct Chem 9:215

    Article  CAS  Google Scholar 

  27. Liebman JF (1991) Thermochemistry of sulphonic acids and their derivatives. In: Patai S, Rappoport Z (eds) The chemistry of the sulphonic acids, esters and their derivatives. Wiley, Chichester, p 283

    Chapter  Google Scholar 

  28. Benson SW (1976) Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters, 2nd edn.Wiley, New York

    Google Scholar 

  29. Matos MAR, Miranda MS, Monte MJS, Santos LMNBF, Morais VMF, Chickos JS, Umnahanant P, Liebman JF (2007) J Phys Chem A 111:11152

    Google Scholar 

  30. Temprado M, Roux MV, Umnahanant P, Zhao H, Chickos JS (2005) J Phys Chem B 109: 12590

    Article  CAS  Google Scholar 

  31. Roux MV, Jiménez P, Dávalos JZ, Temprado M, Liebman JF (2003) J Chem Thermodyn 35: 803

    Article  CAS  Google Scholar 

  32. Roux MV, Jiménez P, Dávalos JZ, Turrión C, Afeefy HY, Liebman JF (1998) J Chem Soc Faraday 94:887

    Article  Google Scholar 

  33. Roux MV, Temprado M, Dávalos JZ, Jiménez P, Hosmane RS, Liebman JF (2002) Phys Chem Chem Phys 4:3611

    Article  CAS  Google Scholar 

  34. Steele WV, Chirico RD, Knipmeyer SE, Nguyen A, Smith NK, Tasker IR (1996) J Chem Eng Data 41:1269

    Article  CAS  Google Scholar 

  35. Ribeiro da Silva MAV, Santos CPF, Monte MJS, Sousa CAD (2006) J Thermal Anal Calorim 83:533

    Article  CAS  Google Scholar 

  36. Hill JO, Wadso I (1968) Acta Chem Scand 22:1590

    Article  CAS  Google Scholar 

  37. Morais VMF, Miranda MS, Matos MAR, Liebman JF (2006) Mol Phys 104:325

    CAS  Google Scholar 

  38. Contineanu I, Wagner L, Stanescu L, Marchidan DI (1982) Rev Roum Chim 27:205

    CAS  Google Scholar 

  39. Emel'yanenko VN, Kabo GJ, Verevkin SP (2006) J Chem Eng Data 51:79

    Article  CAS  Google Scholar 

  40. Matos MAR, Monte MJS, Sousa CCS, Almeida ARRP, Morais VMF (2004) Org Biomol Chem 2:908

    Article  CAS  Google Scholar 

  41. Matos MAR, Morais VMF, Sousa CCS, Roux MV, Notario R, Liebman JF (2007) Mol Phys 105:1789

    Article  CAS  Google Scholar 

  42. Rogers DW, Podosenin A, Liebman JF (1993) J Org Chem 58:2589

    Article  CAS  Google Scholar 

  43. Bernard MA, Boukari Y, Busnot F (1976) Thermochim Acta 16:267

    Article  CAS  Google Scholar 

  44. Matos MAR, Miranda MS, Morais VMF, Liebman JF (2003) J Org Biomol Chem 1:2566

    Article  CAS  Google Scholar 

  45. Aladern R (1893) Compt Rend 116:1457

    Google Scholar 

  46. Domalski ES (1972) J Phys Chem Ref Data 1:221

    Article  CAS  Google Scholar 

  47. Ciocazanu I, Dumitrascu F , Meltzer V (1998) J Thermal Anal 5:595

    Google Scholar 

  48. Nuñez L, Barral L, Pilcher G (1988) J Chem Thermodyn 20:1211

    Article  Google Scholar 

  49. Roux MV, Jiménez P, Daválos JZ, Castaño O, Molina MT, Notario R, Herreros M, Abboud JLM (1996) J Am Chem Soc 118:12735

    Article  CAS  Google Scholar 

  50. Rauh VHJ, Geiseler G (1973) Z Phys Chem (Leipzig) 252:395

    CAS  Google Scholar 

  51. Matos MAR, Miranda MS, Morais VMF, Liebman JF (2005) .Mol Phys 103:221

    Article  CAS  Google Scholar 

  52. Dávalos JZ, Flores H, Jiménez P, Notario R, Roux MV, Juaristi E, Hosmane RS, Liebman JF (1999) J Org Chem. 64:9328

    Article  CAS  Google Scholar 

  53. Pushkareva ZV, Kokoshko ZU (1946) Zh Obshch Khim 16:1269

    CAS  Google Scholar 

  54. Boldyrev BG, Postovskii IYa (1950) Zh Obshch Khimii 20:936

    CAS  Google Scholar 

  55. Steele WV, Chirico RD (1990) Thermodynamics and the hydrodeoxygenation of 2,3-benzofuran. Cooperative agreement no. FC22-83FE60149 (NIPEP-457). IIT Research Institute, NIPEP, Bartlesville

    Google Scholar 

  56. Doering WvE, Birladeanu L, Andrews DW, Pagnotta MJ (1985) J Am Chem Soc 107:428

    Article  CAS  Google Scholar 

  57. Taskinen E (1993) Tetrahedron 49:11389

    Article  CAS  Google Scholar 

  58. Kimmelma R (1988) Acta Chem Scand 42:550

    Article  Google Scholar 

  59. Steele WV, Chirico RD, Knipmeyer SE, Nguyen A (1992) J Chem Thermodyn 24:499

    Article  CAS  Google Scholar 

  60. Delepine M (1897) Compt Rend 125:178

    CAS  Google Scholar 

  61. Delepine M (1898) Compt Rend 126:648

    CAS  Google Scholar 

  62. Beak P, Lee J-K, Zeigler JM (1978) J Org Chem 43: 1536

    Article  CAS  Google Scholar 

  63. Ribeiro da Silva MDMC, Souza P, Pilcher G (1989) J Chem Thermodyn 21:173

    Article  Google Scholar 

  64. Guthrie JP, Pike DC, Lee Y-C (1992) Can J Chem 70:1671

    Article  CAS  Google Scholar 

  65. Abboud J-LM, Jimenez P, Roux MV, Turrión C, Lopez-Mardomingo C, Podosenin A, Rogers DW, Liebman JF (1995) J Phys Org Chem 8:15

    Article  CAS  Google Scholar 

  66. Lebedeva ND, Masalitinova TN, Mon'yakova ON, Oleinikova TP (1980) J Org Chem USSR (Engl Transl) 16:226

    Google Scholar 

  67. Domalski ES, Hearing ED (1993) J Phys Chem Ref Data 22: 805

    Article  CAS  Google Scholar 

  68. Chickos JS, Hesse DG, Liebman JF, Panshin SY (1988) J Org Chem 53:3424

    Article  CAS  Google Scholar 

  69. Shaikhlislamov DS, Talipov MR, Khursan SL (2007) Russ J Phys Chem A 81: 235

    Article  CAS  Google Scholar 

  70. Matos MAR, Miranda MS, Morais VMF, Liebman JF (2004) Eur J Org Chem 3340

    Google Scholar 

  71. Allinger NL, Glaser JA, Davis HE, Rogers DW (1981) J Org Chem 46: 658

    Article  CAS  Google Scholar 

  72. Steele WV, Chirico RD, Nguyen A, Hossenlopp IA, Smith NK (1989) AIChE Symp Ser 85:140

    CAS  Google Scholar 

  73. Taskinen E, Alanko T, Liebman JF (2007) Struct Chem 17:323

    Article  CAS  Google Scholar 

  74. Rogers DW, Zhao Y, Trætteberg M, Hulce M, Liebman J (1998) J Chem Thermodyn 30: 1393

    Article  CAS  Google Scholar 

  75. Roux MV, Jiménez P, Martin- Luengo MA, Dávalos JZ, Sun Z, Hosmane RS, Liebman JF (1997) J Org Chem 62:2732

    Article  CAS  Google Scholar 

  76. Husseini A, Akasheh TS (1985) Dirasat—University of Jordan 12:65

    CAS  Google Scholar 

  77. Glowiak B (1961) Chem Stosow 576

    Google Scholar 

  78. Kirklin DR, Domalski ES (1984) J Chem Thermodyn 16:633

    Article  CAS  Google Scholar 

  79. Zaheeruddin M, Lodhi ZH (1991) Phys Chem (Peshawar, Pakistan) 10:111

    CAS  Google Scholar 

  80. Berthelot MPE (1900) Compt Rend 130:366

    CAS  Google Scholar 

  81. Chia Y-T Simmons HE (1967) J Am Chem Soc 89:2638

    Article  CAS  Google Scholar 

  82. Rouse PE Jr (1976) J Chem Eng Data 21:16

    Article  CAS  Google Scholar 

  83. Geiseler VG, Quitzsch K, Rauh HJ, Schaffernicht H, Walther HJ (1966) Ber Bunsen-Ges Phys Chem 70:551

    CAS  Google Scholar 

  84. Matos MAR, Miranda MS, Pereira SMM, Morais VMF, Liebman JF (2007) J Phys Chem A 111: 7181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matos, M.A.R., Liebman, J.F. (2009). Experimental Thermochemistry of Heterocycles and Their Aromaticity: A Study of Nitrogen, Oxygen, and Sulfur Derivatives of Indane and Indene. In: Krygowski, T.M., Cyrański, M.K. (eds) Aromaticity in Heterocyclic Compounds. Topics in Heterocyclic Chemistry, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68343-8_1

Download citation

Publish with us

Policies and ethics