Skip to main content

Synthesis of High-Nitrogen Energetic Material

  • Chapter
Static Compression of Energetic Materials

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Pure nitrogen can be considered as a material with optimized storage of chemical energy because of the huge difference in energy between triply bonded di-nitrogen and singly bonded nitrogen. N ≡ N bond is one of the strongest chemical bonds known, containing 4.94eV atom−1 while the N-N bond is much weaker with −0.83eV atom−1 [1]. Therefore when transforming from singly bonded nitrogen to diatomic triply bonded molecular nitrogen, a large amount of energy should be released: about 2.3eV atom−1. Or, in other words, this chemical energy can be ideally stored by transforming a triple bond into three single bonds. Thus, nitrogen may form a high-energy density material with energy content higher than that of any known nonnuclear material. The greatest utility of fully single-bonded nitrogen would be as high explosives. Here, a tenfold improvement in detonation pressure over HMX (one the more powerful high explosives) seems possible [2].

A chemical approach for synthesis of nitrogen-energetic materials is creating large all-nitrogen molecules or clusters bound by single (N-N) or single and double (N≡ N) bonds. Calculations predict different polynitrogen molecules or clusters [3] such as, for instance, N4,N8,N20, or even nitrogen fullerene N60 (see for review Refs [3–5]) with high-energy-storage capacity. However, none of them has yet been synthesized with exception of N4(TdN4) [6], albeit with a very short lifetime of ̃1)μs [6]. Synthesis of compounds having several nitrogen atoms consecutively is difficult because the single bond in nitrogen is relatively weak. It has been achieved only in compounds with other atoms. For instance, HN3 and other azides with linear-N3 radical have been synthesized by Curtius in 1890 [7]. Only recently N5 + was synthesized by Christe and coworkers [8]. On the basis of the N3 and N5 + species nearly all nitrogen compounds were synthesized by attaching these radicals to a central atom of Te, B, and P such as N5P(N3)6, N5B(N3)4, Te(N3)4, and others (see for review Refs [2,9–11]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huheey, J. E., Keiter, E. A. & Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity (Harper Collins, New York, 1993).

    Google Scholar 

  2. Christe, K. O. Recent Advances in the Chemistry of N+5 , N 5 and High-Oxygen Compounds. Propel, Explosiv. Pyrotech. 32, 194–204 (2007).

    Article  CAS  Google Scholar 

  3. Samartzis, P. C. & Wodtke, A. M. All-nitrogen chemistry: how far are we from N60? Int. Rev. Phys. Chem. 25 527–552 (2006).

    Article  CAS  Google Scholar 

  4. Rice, B. M., Byrd, E. F. C. & Mattson, W. D. Computational aspects of nitrogen-rich HEM. High Ener Density Mater. Struct. Bond. 125, 153–194 (2007).

    Article  CAS  Google Scholar 

  5. Barlett, R. J. Exploading the mysteries of nitrogen. Chemi. Indus. 140–143 (2000).

    Google Scholar 

  6. Cacase, F., Petris, G. d. & Troiani, A. Experimental detection of tetranitrogen. Science 295, 480–481 (2002).

    Article  Google Scholar 

  7. Curtius, T. Berichte. Deutsch. Chem. Gesellschaft 23, 3023–3033 (1890).

    Article  Google Scholar 

  8. Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N+5 : A novel homolepic polynitro-gen ion as a high energy density material. Angew. Chem. Int. Ed. 38, 2002–2009 (1999).

    Article  Google Scholar 

  9. Klapotke, T. M. in High Energy Density Materials(ed. Klapotke, T. M.), pp. 85–121 (Springer, Heidelberg, 2007).

    Chapter  Google Scholar 

  10. Knapp, C. & Passmore, J. On the Way to “Solid Nitrogen” at Normal Temperature and Pressure? Binary Azides of Heavier Group 15 and 16 elements. Angew. Chem. Int. Ed. 43, 2–4 (2004).

    Article  CAS  Google Scholar 

  11. Glukhovtsev, M. N., Jiao, H. & Schleyer, P. v. R. Besides N2, what is the most stable molecule composed only of nitrogen atoms? Inorg. Chem. 35, 7124–7133 (1996).

    Article  CAS  Google Scholar 

  12. McMahan, A. K. & LeSar, R. Pressure dissociation of solid nitrogen under 1 Mbar. Phys. Rev. Lett. 54, 1929–1932 (1985).

    Article  CAS  Google Scholar 

  13. Martin, R. M. & Needs, R. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures. Phys. Rev. B 34, 5082–5092 (1986).

    CAS  Google Scholar 

  14. Eremets, M. I., Hemley, R. J., Mao, H. K. & Gregoryanz, E. Semiconducting non-molecular nitrogen up to 240 GPa and its low pressure stability. Nature 411, 170–174 (2001).

    Article  CAS  Google Scholar 

  15. Goncharov, A. F., Gregoryanz, E., Mao, H. K., Liu, Z. & Hhemley, R. J. Optical evidence for nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett. 85, 1262–65 (2000).

    Article  CAS  Google Scholar 

  16. Nordlund, K., Krasheninnikov, A., Juslin, N., Nord, J. & Albe, K. Structure and stability of non-molecular nitrogen at ambient pressure. Europ. Lett. 65, 400–406 (2004).

    Article  CAS  Google Scholar 

  17. Mattson, W. D. PhD thesis (University of Illinois at Urbana-Champaign, 2003).

    Google Scholar 

  18. Mailhiot, C., Yang, L. H. & McMahan, A. K. Polymeric nitrogen. Phys. Rev. B 46, 14419– 14435 (1992).

    CAS  Google Scholar 

  19. Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nature Mater. 3, 558–563 (2004).

    Article  CAS  Google Scholar 

  20. Gregoryanz, E. et al. High P-T transformations of nitrogen to 170 GPa. J. Chem. Phys. 126, 184505 (2007).

    Article  CAS  Google Scholar 

  21. Lipp, M. J. et al. Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating. Phys. Rev. B 76, 014113 (2007).

    Google Scholar 

  22. Trojan, I. A., Eremets, M. I., Medvedev, S. A., Gavriliuk, A. G. & Prakapenka, V. B. Transformation of molecular to polymeric nitrogen at high pressures and temperatures. In situ X-ray diffraction studies. Appl. Phys. Lett., to be published (2008).

    Google Scholar 

  23. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys.124, 244704 (2006).

    Article  CAS  Google Scholar 

  24. Caracas, R. Raman spectra and lattice dynamics of cubic gauche nitrogen. J. Chem. Phys. 127, 144510 (2007).

    Article  CAS  Google Scholar 

  25. Mattson, W. D., Sanchez-Portal, D., Chiesa, S. & Martin, R. M. Prediction of new phases of nitrogen at high pressure from first-principles simulations. Phys. Rev. Lett. 93, 125501–125504 (2004).

    Article  CAS  Google Scholar 

  26. Zahariev, F., Hu, A., Hooper, J., Zhang, F. & Woo, T. Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation. Phys. Rev. B 72, 214108 (2005).

    Article  CAS  Google Scholar 

  27. Yu, H. L. et al. First-principles calculations of the single-bonded cubic phase of nitrogen. Phys. Rev. B 73, 012101 (2006).

    Article  CAS  Google Scholar 

  28. Zahariev, F., Dudiy, S. V., Hooper, J., Zhang, F. & Woo, T. K. Systematic method to new phases of polymeric nitrogen under high-pressure. Phys. Rev. Lett. 97, 155503–1555034 (2006).

    Article  CAS  Google Scholar 

  29. Zhang, T., Zhang, S., Chen, Q. & Peng, L.-M. Metastability of single-bonded cubic-gauche structure of N under ambient pressure. Phys. Rev. B 73, 094105–094107 (2006).

    Google Scholar 

  30. Uddin, J., Barone, V. N. & Scuceria, G. E. Energy storage capacity of polymeric nitrogen. Molecul. Phys. 104, 745–749 (2006).

    Article  CAS  Google Scholar 

  31. Zahariev, F., Hooper, J., Alavi, S., Zhang, F. & Woo, T. K. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations. Phys. Rev. B 75, 140101 (2007).

    Google Scholar 

  32. Mitas, L. & Martin, R. M. Quantum Monte Carlo of nitrogen: atom, dimer, atomic, and molecular solids. Phys. Rev. Lett. 72, 2438–2441 (1994).

    Article  CAS  Google Scholar 

  33. Lewis, S. P. & Cohen, M. L. High-pressure atomic phases of solid nitrogen. Phys. Rev. B 46, 11117–11120 (1992).

    CAS  Google Scholar 

  34. Eremets, M. I. et al. Polymerization of nitrogen in sodium azide. J. Chem. Phys. 120, 10618– 10618 (2004).

    Article  CAS  Google Scholar 

  35. Peiris, S. M. & Russell, T. P. Photolysis of Compressed Sodium Azide (NaN3) as a synthetic pathway to nitrogen materials. J. Phys. Chem. A 107, 944–947 (2003).

    CAS  Google Scholar 

  36. Hemley, R. J. Effects of high pressure on molecules. Annu. Rev. Phys. Chem. 51, 763–800 (2000).

    Article  CAS  Google Scholar 

  37. Alemany, M. M. G. & Martins, J. L. Density-functional study of nonmolecular phases of nitrogen: metastable phase at low pressure. Phys. Rev. B. 024110 68, 024110 (2003).

    Article  CAS  Google Scholar 

  38. Zhao, J. First-principles study of atomic nitrogen solid with cubic gauche structure. Phys. Lett. A 360, 645–648 (2007).

    Article  CAS  Google Scholar 

  39. Barbee, T. W. & III. Metastability of atomic phases of nitrogen. Phys. Rev. B 48, 9327–9330 (1993).

    Article  CAS  Google Scholar 

  40. Yakub, E. S. Diatomic fluids at high pressures and temperatures: a non-empirical approach. Physica B 265, 31–38 (1999).

    Article  CAS  Google Scholar 

  41. Caracas, R. & Hemley, R. J. New structures of dense nitrogen: pathways to the polymeric phase. Chem. Phys. Lett. 442, 65–70 (2007).

    Article  CAS  Google Scholar 

  42. Chen, X. Q., Fu, C. L. & Podloucky, R. Superhard Dense Nitrogen. Phys. Rev. B 77, 064103 (2008).

    Article  CAS  Google Scholar 

  43. Ross, M. & Rogers, F. Polymerization, shock cooling, and the high-pressure phase diagram of nitrogen. Phys. Rev. B 74, 024103 (2006).

    Article  CAS  Google Scholar 

  44. Wang, X. L. et al. Prediction of a new layered phase of nitrogen from first-principles simulations. J. Phys.: Condens. Matter. 19, 425226–425229 (2007).

    Article  CAS  Google Scholar 

  45. Reichlin, R., Schiferl, D., Martin, S., Vanderborgh, C. & Mills, R. L. Optical studies of nitrogen to 130 GPa. Phys. Rev. Lett. 55, 1464–1467 (1985).

    Article  CAS  Google Scholar 

  46. Bell, P. M., Mao, H. K. & Hemley, R. J. Observations of solid H2 ,D2 ,N2 at pressures around 1.5 megabar at 25°C. Physica B 139140, 16–20 (1986).

    Google Scholar 

  47. Gregoryanz, E., Goncharov, A. F., Hemley, R. J. & Mao, H. K. High-pressure amorphous nitrogen. Phys. Rev. B 64, 052103 (2001).

    Article  CAS  Google Scholar 

  48. Gregoryanz, E. et al. Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures. Phys. Rev. B 66, 224108–5 (2002).

    Article  CAS  Google Scholar 

  49. Eremets, M. I., Struzhkin, V. V., Mao, H. K. & Hemley, R. J. Superconductivity in boron. Science 293, 272–274 (2001).

    Article  CAS  Google Scholar 

  50. Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. in ESRF Highlights 2004 (ed. Admans, G.), pp. 37–38 (Imprimerie du Pont de Claix, Grenoble, 2005).

    Google Scholar 

  51. Sanz, D. N., Loubeyre, P. & Mezouar, M. Equation of state and pressure induced amorphiza-tion of β-boron from X-ray measurements up to 100 GPa. Phys. Rev. Lett. 89, 245501 (2002).

    Article  CAS  Google Scholar 

  52. Yoo, C. S., Akella, J., Cynn, H. & Nicol, M. Direct elementary reactions of boron and nitrogen at high pressures and temperatures. Phys. Rev. B 56, 140–146 (1997).

    Article  CAS  Google Scholar 

  53. Boehler, R., Bargen, N. v. & Chopelas, A. Melting, thermal expansion, and phase transitions of iron at high pressures. J. Geophys. Res. B 95, 21731–21736 (1990).

    Article  Google Scholar 

  54. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article  CAS  Google Scholar 

  55. Eremets, M. I. Megabar high-pressure cells for Raman measurements. J. Raman Spectr. 34, 515–518 (2003).

    Article  CAS  Google Scholar 

  56. Eremets, M. I. High Pressures Experimental Methods(Oxford University Press, Oxford, 1996).

    Google Scholar 

  57. Knittle, E., Wentzcovitch, R. M., Jeanloz, R. & Cohen, M. L. Experimental and theoretical equation of state of cubic boron nitride. Nature 337, 349–352 (1989).

    Article  CAS  Google Scholar 

  58. Eremets, M. I., Gavriliuk, A. G. & Trojan, I. A. Single-crystalline polymeric nitrogen. Appl. Phys. Lett. 90, 171904 (2007).

    Article  CAS  Google Scholar 

  59. Manzhelii, V. G. & Freiman, Y. A. (eds.) Physics of Cryocrystals(American Institute of Physics, College Park, MD, 1997).

    Google Scholar 

  60. Bini, R., Ulivi, L., Kreutz, J. & Jodl, H. J. High-pressure phases of solid nitrogen by Raman and infrared spectroscopy. J. Chem. Phys. 112, 8522–8529 (2000).

    Article  CAS  Google Scholar 

  61. Mills, R. L., Olinger, B. & Cromer, D. T. Structures and phase diagrams of N2 and CO to 13 GPa by x-ray diffraction. J. Chem. Phys. 84, 2837–2845 (1986).

    Article  CAS  Google Scholar 

  62. Olijnyk, H. High pressure x-ray diffraction studies on solid N2 up to 43.9 GPa. J. Chem. Phys. 93, 8968–8972 (1990).

    Article  CAS  Google Scholar 

  63. Hanfland, M., Lorenzen, M., Wassilew-Reul, C. & Zontone, F. Structures of molecular nitrogen at high pressure. Rev. High Pressure Sci. Technol. 7, 787–789 (1998).

    CAS  Google Scholar 

  64. Goncharov, A. F., Gregoryanz, E., Mao, H.-K. & Hemley, R. J. Vibrational dynamics of solid molecular nitrogen to megabar pressures. Low Temper. Phys. 27, 866–869 (2001).

    Article  CAS  Google Scholar 

  65. Schiferl, D., Buchsbaum, S. & Mills, R. L. Phase transitions in nitrogen observed by Raman spectroscopy from 0.4 to 27.4 GPa at 15 K. J. Phys. Chem. 89, 2324–2330 (1985).

    Article  CAS  Google Scholar 

  66. LeSar, R. Improved electron-gas model calculations of solid N2 to 10 GPa. J. Chem. Phys. 81, 5104–5108 (1984).

    Article  CAS  Google Scholar 

  67. Jephcoat, A. P., Hemley, R. J., Mao, H. K. & Cox, D. E. Pressure-induced structural transitions in solid nitrogen. Bull. Am. Phys. Soc. 33, 522 (1988).

    Google Scholar 

  68. Gregoryanz, E. et al. On the epsilon-zeta transition of nitrogen. J. Chem. Phys. 124, 116102 (2006).

    Article  CAS  Google Scholar 

  69. M. I. Eremets et al. Disordered state in first-order phase transitions: Hexagonal-to-cubic and cubic-to-hexagonal transitions in boron nitride. Phys. Rev. B 57, 5655–5660 (1998).

    Article  CAS  Google Scholar 

  70. Levitas, V. I., Henson, B. F., Smilowitz, L. B. & Asay, B. W. Solid-solid phase transformation via virtual melting significantly below the melting temperature. Phys. Rev. Lett. 92, 235702-1-4 (2004).

    Article  CAS  Google Scholar 

  71. Hanfland, M., Beister, H. & Syassen, K. Graphite under pressure: equation of state and first-order Raman modes. Phys. Rev. B 39, 12598–12603 (1989).

    Article  CAS  Google Scholar 

  72. Occelli, F., Loubeyre, P. & LeToullec, R. Properties of diamond under hydrostatic pressures up to 140 GPa. Nature Materials 2, 151–154 (2003).

    Article  CAS  Google Scholar 

  73. Furthmueller, J., Hafner, J. & Kresse, G. Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials. Phys. Rev. B 50, 15606–15622 (1994).

    Article  CAS  Google Scholar 

  74. Albe, K. Theoretical study of boron nitride modifications at hydrostatic pressures. Phys. Rev. B 55, 6203–6210 (1997).

    Article  CAS  Google Scholar 

  75. Fahy, S., Louie, S. G. & Cohen, M. L. Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys. Rev. B 34, 1191–1199 (1986).

    Article  CAS  Google Scholar 

  76. Eremets, M. I., Trojan, I. A., Medvedev, S. A., Tse, J. S. & Yao, Y. Superconductivity in hydrogen dominant materials: silane. Science 319, 1506–1509 (2008).

    Article  CAS  Google Scholar 

  77. Pickard, C. J. & Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eremets, M.I., Trojan, I.A., Gavriliuk, A.G., Medvedev, S.A. (2009). Synthesis of High-Nitrogen Energetic Material. In: Peiris, S.M., Piermarini, G.J. (eds) Static Compression of Energetic Materials. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68151-9_2

Download citation

Publish with us

Policies and ethics