Skip to main content

Phosphorus and Sulphur Cycling in Terrestrial Ecosystems

  • Chapter
Nutrient Cycling in Terrestrial Ecosystems

Part of the book series: Soil Biology ((SOILBIOL,volume 10))

Abstract

Phosphorus (P) and sulphur (S) are essential elements for all living cells. Among the biomolecules that contain P are nucleic acids (DNA and RNA), phospholipids, sugar phosphates (e.g. glucose-6-phosphate) and molecules with an energy-rich pyrophosphate bond (e.g. ATP), whereas S is contained in two amino acids (cysteine and methionine) and various coenzymes, vitamins and sulpholipids. The forms, amounts, transformation processes and cycling rates of the two elements in terrestrial ecosystems are usually studied either from an agronomic point of view, i.e. from the perspective of imminent deficiencies, since both elements are major plant nutrients and therefore essential to achieve sufficient crop yields, or from an environmental point of view, where a surplus of these elements in ecosystems may lead to eutrophication or even direct toxicity effects in the case of S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfredsson H, Condron L, Clarholm M, Davis M (1998) Changes in soil acidity and organic matter following the establishment of conifers on former grassland in New Zealand. For Ecol Manage 112:245–252

    Google Scholar 

  • Amelung W, Zech W, Zhang X, Follett RF, Tiessen H, Knox E, Flach K-W (1998) Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climate. Soil Sci Soc Am J 62:172–181

    CAS  Google Scholar 

  • Anderson G (1960) Factors affecting the estimation of phosphate esters in soil. J Sci Food Agric 9:497–503

    Google Scholar 

  • Attiwill P, Adams M (1993) Tansley review no. 50 — Nutrient cycling in forests. New Phytol 124:561–582

    CAS  Google Scholar 

  • Autry AR, Fitzgerald JW (1993) Relationship between microbial activity, biomass and organosulfur formation in forest soil. Soil Biol Biochem 25:33–39

    CAS  Google Scholar 

  • Banwart WL, Bremner JM (1976) Evolution of volatile sulfur compounds from soils treated with sulfur-containing organic materials. Soil Biol Biochem 8:439–443

    CAS  Google Scholar 

  • Belton M, O’Connor K, Robson A (1995) Phosphorus levels in topsoils under conifer plantations in Canterbury high country grasslands. N Z J For Sci 25:265–282

    CAS  Google Scholar 

  • Bowman RA (1989) A sequential extraction procedure with concentrated sulfuric acid and dilute base for soil organic phosphorus. Soil Sci Soc Am J 53:362–366

    CAS  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    CAS  Google Scholar 

  • Bühler S, Oberson A, Rao IM, Friesen DK, Frossard E (2002) Sequential phosphorus extraction of a 33P-labeled Oxisol under contrasting agricultural systems. Soil Sci Soc Am J 66:868–877

    Google Scholar 

  • Bünemann EK (2003) Phosphorus dynamics in a Ferralsol under maize-fallow rotations: the role of the soil microbial biomass. PhD dissertation. Swiss Federal Institute of Technology, Zurich, Switzerland. URL: http://e-collection.ethbib.ethz.ch/show?type=diss&nr=15207

    Google Scholar 

  • Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004a) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Google Scholar 

  • Bünemann EK, Smithson PC, Jama B, Frossard E, Oberson A (2004b) Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya. Plant Soil 264:195–208

    Google Scholar 

  • Bünemann EK, Steinebrunner F, Smithson PC, Frossard E, Oberson A (2004c) Phosphorus dynamics in a highly weathered soil as revealed by isotopic labeling techniques. Soil Sci Soc Am J 68:1645–1655

    Google Scholar 

  • Cade-Menun BJ (2004) Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize organic phosphorus in environmental samples. In: Turner BL, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CAB International, Wallingford, UK, pp 21–44

    Google Scholar 

  • Celi L, Barberis E (2004) Abiotic stabilization of organic phosphorus in the environment. In: Turner BL, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CAB International, Wallingford, UK, pp 113–132

    Google Scholar 

  • Chauhan BS, Stewart JWB, Paul EA (1979) Effect of carbon additions on soil labile inorganic, organic and microbially held phosphate. Can J Soil Sci 59:387–396

    CAS  Google Scholar 

  • Chauhan BS, Stewart JWB, Paul EA (1981) Effect of labile inorganic phosphate status and organic carbon additions on the microbial uptake of phosphorus in soils. Can J Soil Sci 61:373–385

    CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2000) Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant Soil 220:151–163

    CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2001) Effects of land-use change from grassland to forest on soil sulfur and arylsulfatase activity in New Zealand. Aust J Soil Res 39:749–757

    CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2003a) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manage 177:539–557

    Google Scholar 

  • Chen CR, Condron LM, Sinaj S, Davis MR, Sherlock RR, Frossard E (2003b) Effects of plant species on phosphorus availability in a range of grassland soils. Plant Soil 256:115–130

    CAS  Google Scholar 

  • Chen CR, Condron LM, Turner BL, Mahieu N, Davis MR, Xu ZH, Sherlock RR (2004) Mineralisation of soil orthophosphate monoesters under pine seedlings and ryegrass. Aust J Soil Res 42:189–196

    CAS  Google Scholar 

  • Colvan SR, Syers JK, O’Donnell AG (2001) Effect of long-term fertiliser use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland. Biol Fertil Soils 34:258–263

    CAS  Google Scholar 

  • Condron LM (2004) Phosphorus — surplus and deficiency. In: Schjønning P, Elmholt S, Christensen BT (eds) Managing soil quality: challenges in modern agriculture. CAB International, Wallingford, UK, pp 69–84

    Google Scholar 

  • Condron L, Newman R (1998) Chemical nature of soil organic matter under grassland and recently established forest. Eur J Soil Sci 49:597–603

    Google Scholar 

  • Condron LM, Moir JO, Tiessen H, Stewart JWB (1990) Critical evaluation of methods for determining total organic phosphorus in tropical soils. Soil Sci Soc Am J 54:1261–1266

    CAS  Google Scholar 

  • Condron L, Davis M, Newman R, Cornforth I (1996) Influence of conifers on the forms of phosphorus in selected New Zealand grassland soils. Biol Fertil Soils 21:37–42

    Google Scholar 

  • Condron L, Frossard E, Newman R, Tekely P, Morel J (1997) Use of 31P NMR in the study of soils and the environment. In: Nanny MA, Minear RA, Leenheer JA (eds) Nuclear magnetic resonance spectroscopy in environmental chemistry. Oxford University Press, New York, pp 246–276

    Google Scholar 

  • Davis M (1994) Topsoil properties under tussock grassland and adjoining pine forest in Otago, New Zealand. N Z J Agric Res 37:465–469

    Google Scholar 

  • Davis MR (1995) Influence of radiata pine seedlings on chemical properties of some New Zealand montane grassland soils. Plant Soil 176:255–262

    CAS  Google Scholar 

  • Davis M, Condron L (2002) Impact of grassland afforestation on soil carbon in New Zealand: a review of paired site studies. Aust J Soil Res 40:675–690

    Google Scholar 

  • Davis M, Lang M (1991) Increased nutrient availability in topsoils under conifers in the South Island high country. N Z J For Sci 21:165–179

    CAS  Google Scholar 

  • Dedourge O, Vong PC, Lasserre-Joulin F, Benizri E, Guckert A (2003) Immobilization of sulphur-35, microbial biomass and arylsulphatase activity in soils from field-grown rape, barley and fallow. Biol Fertil Soils 38:181–185

    CAS  Google Scholar 

  • De Nobili M, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163–1170

    Google Scholar 

  • Di HJ, Cameron KC, McLaren RG (2000) Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: a review of the theory, methodologies and limitations. Aust J Soil Res 38:213–230

    CAS  Google Scholar 

  • Dick RP, Rasmussen PE, Kerle EA (1988) Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol Fertil Soils 6:159–164

    CAS  Google Scholar 

  • Eriksen J (1996) Incorporation of S into soil organic matter in the field as determined by the natural abundance of stable S isotopes. Biol Fertil Soils 22:149–155

    Google Scholar 

  • Eriksen J, Lefroy RDB, Blair GJ (1995a) Physical protection of soil organic S studied using acetylacetone extraction at various intensities of ultrasonic dispersion. Soil Biol Biochem 27:1005–1010

    CAS  Google Scholar 

  • Eriksen J, Lefroy RDB, Blair GJ (1995b) Physical protection of soil organic S studied by extraction and fractionation of soil organic matter. Soil Biol Biochem 27:1011–1016

    CAS  Google Scholar 

  • Fairhurst T, Lefroy RDB, Mutert E, Batjes N (1999) The importance, distribution and causes of phosphorus deficiency as a constraint to crop production in the tropics. Agrofor For 9:2–8

    Google Scholar 

  • Fardeau JC (1996) Dynamics of phosphate in soils. An isotopic outlook. Fertil Res 45:91–100

    Google Scholar 

  • Freney JR, Melville GE, Williams CH (1971) Organic sulphur fractions labelled by addition of 35S-sulphate to soil. Soil Biol Biochem 3:133–141

    CAS  Google Scholar 

  • Frossard E, Sinaj S (1997) The isotope exchange kinetic technique: a method to describe the availability of inorganic nutrients. Applications to K, P, S and Zn. Isot Environ Health Stud 33:61–77

    CAS  Google Scholar 

  • Frossard E, Feller C, Tiessen H, Stewart JWB, Fardeau JC, Morel JL (1993) Can an isotopic method allow for the determination of the phosphate-fixing capacity of soils? Commun Soil Sci Plant Anal 24:367–377

    CAS  Google Scholar 

  • Frossard E, Fardeau JC, Brossard M, Morel JL (1994) Soil isotopically exchangeable phosphorus: a comparison between E and L values. Soil Sci Soc Am J 58:846–851

    CAS  Google Scholar 

  • Frossard E, Brossard M, Hedley MJ, Metherell A (1995) Reactions controlling the cycling of P in soils. In: Tiessen H (ed) Phosphorus in the global environment. Transfers, cycles and management. Wiley, Chichester, pp 107–137

    Google Scholar 

  • Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29:15–23

    CAS  Google Scholar 

  • Ganeshamurthy AN, Nielsen NE (1990) Arylsulfatase and the biochemical mineralization of soil organic sulfur. Soil Biol Biochem 22:1163–1165

    CAS  Google Scholar 

  • George TS, Richardson AE, Simpson RJ (2005) Behaviour of plant derived extracellular phytase upon addition to soil. Soil Biol Biochem 37:977–988

    CAS  Google Scholar 

  • Ghani A, McLaren RG, Swift RS (1993a) Mobilization of recently formed soil organic sulphur. Soil Biol Biochem 25:1739–1744

    CAS  Google Scholar 

  • Ghani A, McLaren RG, Swift RS (1993b) The incorporation and transformations of S-35 in soil: effects of soil conditioning and glucose or sulfate additions. Soil Biol Biochem 25:327–335

    CAS  Google Scholar 

  • Godbold DL (1999) The role of mycorrhizas in phosphorus acquisition. Agrofor For 9:25–27

    Google Scholar 

  • Groenendijk FM, Condron LM, Rijkse WC (2002) Effects of afforestation on organic carbon, nitrogen and sulfur concentrations in New Zealand hill country soils. Geoderma 108:91–100

    CAS  Google Scholar 

  • Hamon RE, Bertrand I, McLaughlin MJ (2002) Use and abuse of isotopic exchange data in soil chemistry. Aust J Soil Res 40:1371–1381

    CAS  Google Scholar 

  • Hayes JE, Richardson AE, Simpson RJ (2000) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286

    CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    CAS  Google Scholar 

  • Janzen HH, Ellert BH (1998) Sulfur dynamics in cultivated, temperate agroecosystems. In: Maynard DG (ed) Sulfur in the environment. Dekker, New York, pp 261–277

    Google Scholar 

  • Kahnert A, Mirleau P, Wait R, Kertesz MA (2002) The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida. Environ Microbiol 4:225–237

    PubMed  CAS  Google Scholar 

  • Kelly DP, Murrell JC (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172:341–348

    PubMed  CAS  Google Scholar 

  • Kemp PD, Condron LM, Matthew C (1999) Pastures and soil fertility. In: White J, Hodgson J (eds) New Zealand pasture and crop science. Oxford University Press, Auckland, pp 67–82

    Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55:1939–1945

    PubMed  CAS  Google Scholar 

  • Klose S, Tabatabai M (1999) Arylsulfatase activity of microbial biomass in soils. Soil Sci Soc Am J 63:569–574

    CAS  Google Scholar 

  • Knights JS, Zhao FJ, Spiro B, McGrath SP (2000) Long-term effects of land use and fertilizer treatments on sulfur cycling. J Environ Qual 29:1867–1874

    CAS  Google Scholar 

  • Kouno K, Tuchiya Y, Ando T (1995) Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol Biochem 27:1353–1357

    CAS  Google Scholar 

  • Krouse HR, Mayer B, Schoenau JJ (1996) Applications of stable isotope techniques to soil sulfur cycling. In: Boutton TW, Yamasaki S (eds) Mass spectrometry of soils. Dekker, New York, pp 247–284

    Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods. SSSA/ASA, Madison, WI, pp 869–919

    Google Scholar 

  • L’Annunziata MF (1987) Radionuclide tracers: their detection and measurement. Academic, London

    Google Scholar 

  • Lou G, Warman PR (1992) Enzymatic hydrolysis of ester sulfate in soil organic matter extracts. Biol Fertil Soils 14:112–115

    CAS  Google Scholar 

  • Lou GQJ, Warman PR (1994) Characterization of ester sulfate in a gypsum amended podzol using an immobilized sulfatase reactor. Biol Fertil Soils 17:276–280

    CAS  Google Scholar 

  • Magid J, Tiessen H, Condron LM (1996) Dynamics of organic phosphorus in soils under natural and agricultural ecosystems. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 429–466

    Google Scholar 

  • Mayer B, Feger KH, Giesemann A, Jager HJ (1995) Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data. Biogeochemistry 30:31–58

    CAS  Google Scholar 

  • Maynard DG, Stewart JWB, Bettany JR (1983) Sulfur and nitrogen mineralization in soils compared using two incubation techniques. Soil Biol Biochem 15:251–256

    CAS  Google Scholar 

  • Maynard DG, Stewart JWB, Bettany JR (1985) The effects of plants on soil sulfur transformations. Soil Biol Biochem 17:127–134

    CAS  Google Scholar 

  • McCaskill MR, Cayley JWD (2000) Soil audit of a long-term phosphate experiment in southwestern Victoria: total phosphorus, sulfur, nitrogen, and major cations. Aust J Agric Res 51:737–748

    CAS  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286

    CAS  Google Scholar 

  • McLaughlin MJ, Reuter DJ, Rayment GE (1999) Soil testing — principles and concepts. In: Peverill KI et al (eds) Soil analysis — an interpretation manual. CSIRO, Collingwood, Victoria, Australia, pp 1–21

    Google Scholar 

  • Mitchell MJ, David MB, Harrison RB (1992) Sulphur dynamics of forest ecosystems. In: Howarth RW, Stewart JWB, Ivanov MV (eds) Sulphur cycling on the continents: wetlands, terrestrial ecosystems and associated water bodies. Wiley, Chichester, pp 215–254

    Google Scholar 

  • Murphy DV, Recous S, Stockdale EA, Fillery IRP, Jensen LS, Hatch DJ, Goulding KWT (2003) Gross nitrogen fluxes in soil: theory, measurement and application of N-15 pool dilution techniques. Adv Agron 79:69–118

    CAS  Google Scholar 

  • Nguyen ML, Goh KM (1994) Sulfur cycling and its implications on sulfur fertilizer requirements of grazed grassland ecosystems. Agric Ecosyst Environ 49:173–206

    CAS  Google Scholar 

  • Nziguheba G, Smolders E, Merckx R (2005) Sulphur immobilization and availability in soils assessed using isotope dilution. Soil Biol Biochem 37:635–644

    CAS  Google Scholar 

  • Oberson A, Joner EJ (2005) Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CAB International, Wallingford, UK, pp 133–164

    Google Scholar 

  • O’Donnell AG, Wu J, Syers JK (1994) Sulfate-S amendments in soil and their effects on the transformation of soil sulfur. Soil Biol Biochem 26:1507–1514

    CAS  Google Scholar 

  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth H-R, Frossard E (2001a) Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soils 34:31–41

    Google Scholar 

  • Oehl F, Oberson A, Sinaj S, Frossard E (2001b) Organic phosphorus mineralization studies using isotopic dilution techniques. Soil Sci Soc Am J 65:780–787

    CAS  Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675

    CAS  Google Scholar 

  • Pamidi J, Goh KM, McLaren RG (2001) Comparison of three different methods of determining soil sulphur mineralization in relation to plant sulphur availability in soils. Biol Fertil Soils 34:131–139

    CAS  Google Scholar 

  • Phiri S, Barrios E, Rao IM, Singh BR (2001) Changes in soil organic matter and phosphorus fractions under planted fallows and a crop rotation system on a Colombian volcanic-ash soil. Plant Soil 231:211–223

    CAS  Google Scholar 

  • Preston CM (1996) Applications of NMR to soil organic matter analysis: history and perspectives. Soil Sci 161:144–166

    CAS  Google Scholar 

  • Prietzel J, Thieme J, Neuhäusler U, Susini J, Kögel-Knabner I (2003) Speciation of sulphur in soils and soil particles by X-ray spectromicroscopy. Eur J Soil Sci 54:423–433

    CAS  Google Scholar 

  • Quiquampoix H, Mousain D (2005) Enzymatic hydrolysis of organic phosphorus. In: Turner BL, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CAB International, Wallingford, UK, pp 89–112

    Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56

    CAS  Google Scholar 

  • Ross DJ, Tate KR, Scott NA, Feltham CW (1999) Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol Biochem 31:803–813

    CAS  Google Scholar 

  • Saggar S, Bettany JR, Stewart JWB (1981) Measurement of microbial sulfur in soil. Soil Biol Biochem 13:493–498

    CAS  Google Scholar 

  • Salas AM, Elliott ET, Westfall DG, Cole CV, Six J (2003) The role of particulate organic matter in phosphorus cycling. Soil Sci Soc Am J 67:181–189

    CAS  Google Scholar 

  • Satheesh SK, Moorthy KK (2005) Radiative effects of natural aerosols: a review. Atmos Environ 39:2089–2110

    CAS  Google Scholar 

  • Saunders WMH, Williams EG (1955) Observations on the determination of total organic phosphorus in soils. J Soil Sci 6:254–267

    CAS  Google Scholar 

  • Shand CA, Smith S (1997) Enzymatic release of phosphate from model substrates and P compounds in soil solution from a peaty podzol. Biol Fertil Soils 24:183–187

    CAS  Google Scholar 

  • Shang C, Caldwell DE, Stewart JWB, Tiessen H, Huang PM (1996) Bioavailability of organic and inorganic phosphates adsorbed on short-range ordered aluminum precipitate. Microb Ecol 31:29–39

    CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    CAS  Google Scholar 

  • Skjemstad JO, Spouncer LR, Cowie B, Swift RS (2004) Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Aust J Soil Res 42:79–88

    CAS  Google Scholar 

  • Smestad BT, Tiessen H, Buresh RJ (2002) Short fallows of Tithonia diversifolia and Crotalaria grahamiana for soil fertility improvement in western Kenya. Agrofor Syst 55:181–194

    Google Scholar 

  • Solomon D, Lehmann J, Martinez CE (2003) Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter. Soil Sci Soc Am J 67:1721–1731

    CAS  Google Scholar 

  • Speir TW, Ross DJ (1978) Soil phosphatase and sulphatase. In: Burns RG (ed) Soil enzymes. Academic, London, pp 197–250

    Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York

    Google Scholar 

  • Tabatabai MA (1992) Methods of measurement of sulphur in soils, plant materials and waters. In: Howarth RW, Stewart JWB, Ivanov, MV (eds) Sulphur cycling on the continents: wetlands, terrestrial ecosystems and associated water bodies. Wiley, Chichester, pp 307–344

    Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle JS, Bottomley PJ, Bezdicek, DF, Smith MS, Tabatabai MA, Wollum AG (eds) Methods of soil analysis, part 2. Microbiological and biochemical properties. SSSA, Madison, WI, pp 775–833

    Google Scholar 

  • Tiessen H, Moir JO (1993) Characterisation of available P by sequential extraction. In: MR Carter (ed) Soil sampling and methods of analysis. CRC Press, Boca Raton, pp 75–86

    Google Scholar 

  • Tiessen H, Stewart JWB, Hunt HW (1984) Concepts of soil organic matter transformations in relation to organo-mineral particle size fractions. Plant Soil 76:287–295

    CAS  Google Scholar 

  • Turner BL, Richardson AE (2004) Identification of scyllo-inositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Sci Soc Am J 68:802–808

    CAS  Google Scholar 

  • Turner BL, McKelvie ID, Haygarth PM (2002) Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol Biochem 34:27–35

    CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003a) The phosphorus composition of temperate pasture soils determined by NaOH-EDTA extraction and solution 31P NMR spectroscopy. Org Geochem 34:1199–1210

    CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003b) Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Sci Soc Am J 67:497–510

    CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003c) Quantification of myo-inositol hexakisphosphate in alkaline soil extracts by solution P-31 NMR spectroscopy and spectral deconvolution. Soil Sci 168:469–478

    CAS  Google Scholar 

  • Vanlauwe B, Aman S, Aihou K, Tossah BK, Adebiyi V, Sanginga N, Lyasse O, Diels J, Merckx R (1999) Alley cropping in the moist savanna of West Africa: III. Soil organic matter fractionation and soil productivity. Agrofor Syst 42:245–264

    Google Scholar 

  • Vannier C, Frossard E, Guillet B (1993) The effects of vegetation and soil components on the immobilization of sulfur in the forest soils of Mont Lozere (spruce and beech forests). Acta Oecol 14:807–821

    Google Scholar 

  • Vong PC, Dedourge O, Lasserre-Joulin F, Guckert A (2003) Immobilized-S, microbial biomass-S and soil arylsulfatase activity in the rhizosphere soil of rape and barley as affected by labile substrate C and N additions. Soil Biol Biochem 35:1651–1661

    CAS  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  Google Scholar 

  • Wu J, Odonnell AG, Syers JK (1993) Microbial growth and sulfur immobilization following the incorporation of plant residues into soil. Soil Biol Biochem 25:1567–1573

    CAS  Google Scholar 

  • Xia K, Weesner F, Bleam WF, Bloom PR, Skyllberg UL, Helmke PA (1998) XANES studies of oxidation states of sulfur in aquatic and soil humic substances. Soil Sci Soc Am J 62:1240–1246

    CAS  Google Scholar 

  • Yeates GW, Saggar S (1998) Comparison of soil microbial properties and fauna under tussock-grassland and pine plantation. J R Soc N Z 28:523–535

    Google Scholar 

  • Yeates GW, Saggar S, Daly BK (1997) Soil microbial C, N, and P, and microfaunal populations under Pinus radiata and grazed pasture landuse systems. Pedobiologia 549–565

    Google Scholar 

  • Zhao FJ, Wu J, McGrath SP (1996) Soil organic sulphur and its turnover. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 467–506

    Google Scholar 

  • Zhao FJ, Spiro B, Poulton PR, McGrath SP (1998) Use of sulfur isotope ratios to determine anthropogenic sulfur signals in a grassland ecosystem. Environ Sci Technol 32:2288–2291

    CAS  Google Scholar 

  • Zhao FJ, Knights JS, Hu ZY, McGrath SP (2003) Stable sulfur isotope ratio indicates long-term changes in sulfur deposition in the Broadbalk experiment since 1845. J Environ Qual 32:33–39

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bünemann, E.K., Condron, L.M. (2007). Phosphorus and Sulphur Cycling in Terrestrial Ecosystems. In: Marschner, P., Rengel, Z. (eds) Nutrient Cycling in Terrestrial Ecosystems. Soil Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_3

Download citation

Publish with us

Policies and ethics