Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 51))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Goldberg and R. E. Smith. Nonstationary function optimization using genetic algorithms with dominance and diploidy. In J. J. Grefenstette, editor, Second International Conference on Genetic Algorithms, pages 59-68. Lawrence Erlbaum Associates, 1987.

    Google Scholar 

  2. T. Back (1998). On the behavior of evolutionary algorithms in dynamic fitness landscapes. In Proc. of the 1998 IEEE Int. Conf. on Evolutionary Computation, pp 446-451. IEEE Press.

    Google Scholar 

  3. N. Mori, S. Imanishi, H. Kita, and Y. Nishikawa. Adaptation to changing envi-ronments by means of the memory based thermodynamical genetic algorithm. In T. Bäck, editor. Seventh International Conference on Genetic Algorithms, pp 299-306. Morgan Kaufmann, 1997.

    Google Scholar 

  4. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, 2002.

    Google Scholar 

  5. J. Branke. Evolutionary approaches to dynamic optimization problems - Instruction and recent trends-. in J. Branke, editor, Proceedings of the Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp 1-3. Chicago, USA, 2003.

    Google Scholar 

  6. H. G. Cobb. An investigation into the use of hypermutation as adaptive op-erator in genetic algorithms having continuous, time-dependent nonstationary environments. Technical Report AIC-90-001, Naval Research Laboratory, Washington, USA, 1990.

    Google Scholar 

  7. R. W. Morrison and K. A. De Jong (2000). Triggered hypermutation revisited. Proc. of the 2000 Congress on Evolutionary Computation, pp 1025-1032.

    Google Scholar 

  8. J. J. Grefenstette. Genetic algorithms for changing environments. In R. Maenner and B. Manderick, editors, Parallel Problem Solving from Nature 2, pp 137-144. North-Holland, 1992.

    Google Scholar 

  9. J. Lewis, E. Hart and G. Ritchie (1998). A comparison of dominance mecha-nisms and simple mutation on non-stationary problems. Proc. of the 5th Int. Conf. on Parallel Problem Solving from Nature, pp 139-148.

    Google Scholar 

  10. K. P. Ng and K. C. Wong (1995). A new diploids scheme and dominance change mechanism for non-stationary function optimisation. In L. J. Eshelman (ed.), Proc. of the 6th Int. Conf. on Genetic Algorithms.

    Google Scholar 

  11. S. Yang. Memory-based immigrants for genetic algorithms in dynamic environments. Proceedings of the 2005 Genetic and Evolutionary Computation Con-ference, Vol. 2, pp 1115-1122, 2005.

    Article  Google Scholar 

  12. J. Branke, T. Kaufler, C. Schmidt, and H. Schmeck. A multipopulation ap-proach to dynamic optimization problems. Adaptive Computing in Design and Manufacturing. Springer, 2000.

    Google Scholar 

  13. D. C. Montgomery, Design and Analysis of Experiments, 3rd ed. New York: Wiley, 1991.

    MATH  Google Scholar 

  14. S. Zeng, L. Kang, L. Ding. An Orthogonal Multi-objective Evolutionary Algo-rithm for Multi-objective Optimization Problems with Constraints. Evolutionary Computation. Vol.12, No.1, pp 77-98, MIT Press, 2004.

    Article  Google Scholar 

  15. S. Zeng, S. Yao, L. Kang, and Y. Liu. An Efficient Multi-objective Evolutionary Algorithm: OMOEA-II. In C. A. Coello Coello et al. (Eds.), proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, LNCS series, Springer-Verlag, pp 108-119, 2005.

    Google Scholar 

  16. Y. W. Leung and Q. Zhang (1997). Evolutionary algorithms + experimental design methods: A hybrid approach for hard optimization and search problems, Res. Grant Proposal, Hong Kong Baptist Univ.

    Google Scholar 

  17. Y. W. Leung and Y. Wang (2001). An orthogonal genetic algorithm with quan-tization for global numerical optimization. IEEE Trans. Evol. Comput. vol.5, No.1, pp. 40-53.

    Google Scholar 

  18. T. C. Fogarty, F. Vavak, and P. Cheng. Use of the genetic algotithm for load balancing of sugar beet presses. Proceedings of the 6th Int. Conf. on Genetic Algorithms, pages 617-624. Morgan Kanufmann, 1995.

    Google Scholar 

  19. C. L. Karr. Genetic algorithms and fuzzy logic for adaptive process control. In S. Goonatilake and S. Khebbal, editors, Intelligeht Hybrid Systems, chapter 4, pages 63-64, John Wiley, 1995.

    Google Scholar 

  20. C. L. Karr. Adaptive process control using biologic paradigms, In L. C. Jain, editor, Proceedings of Electronic Technology Directions to the Year 2000, volume 1, pages 128-136, 1995. 104 Sanyou Zeng, Hui Shi, Lishan Kang, and Lixin Ding

    Google Scholar 

  21. C. L. Ramsey and J. J. Grefenstette. Case-based initialization of genetic algo-rithms, In S. Forrest, editor, Proceedings of the 5th International Conference on Genetic Algorithms, pages 84-91. Morgan Kaufmann, 1993.

    Google Scholar 

  22. R. W. Morrison and K. A. DeJong. A test problem generator for nonstationary environments. Proceedings of the 1999 Congress on Evolutionary Computation, volume 3, pages 2047-2053, 1999.

    Google Scholar 

  23. S. Yang. Constructing dynamic test environments for genetic algorithms based on problem difficulty. Proceedings of the 2004 Congress on Evolutionary Com-putation, Vol. 2, pages 1262-1269, 2004.

    Google Scholar 

  24. A. S. Hedayat, N. J. A. Sloane and J. Stufken. Orthogonal Arrays: Theory and Applications. New York: Springer-Verlag, 1999.

    MATH  Google Scholar 

  25. J. Branke, T. Kaubler, and H. Schmeck. Guiding multiobjective evolutionary algorithms towards interesting regions. Technical Report No. 399, Institute AIFB, University of Karlsruhe, Germany, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeng, S., Shi, H., Kang, L., Ding, L. (2007). Orthogonal Dynamic Hill Climbing Algorithm: ODHC. In: Yang, S., Ong, YS., Jin, Y. (eds) Evolutionary Computation in Dynamic and Uncertain Environments. Studies in Computational Intelligence, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49774-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49774-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49772-1

  • Online ISBN: 978-3-540-49774-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics