Skip to main content

The Virtual Operating Field – How Image Guidance can Become Integral to Microneurosurgery

  • Chapter
Samii's Essentials in Neurosurgery

Abstract

In neurosurgery, layers of soft tissue, bone, and parenchyma conceal vital structures, landmarks, and the targeted lesion. Guiding an approach to a lesion with the help of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound images of the anatomy of a patient enables avoidance of accidental damage and the definition of a clear surgical corridor in individually uncharted territory. Today, surgical image guidance based on three-dimensional (3D) volumetric data has become part of the routine in most neurosurgical centers around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 319.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander E III, Maciunas RJ (1999) Advanced Neurosurgical Navigation. Thieme, New York

    Google Scholar 

  2. Bonsanto MM, Metzner R, Aschoff A, et al (2005) 3D ultrasound navigation m syrinx surgery – a feasibility study. Acta Neurochir (Wien) 147:533–540

    Article  CAS  Google Scholar 

  3. Dey D, Gobbi DG, Slomka PJ, et al (2002) Automatic fusion of freehand endoscopic brain images to three-dimensional surfaces: creating stereoscopic panoramas. IEEE Trans Med Imaging 21:23–30

    Article  PubMed  Google Scholar 

  4. Doshi PK, Lemmieux L, Fish DR, et al (1995) Frameless stereotaxy and interactive neurosurgery with the ISG viewing wand. Acta Neurochir Suppl 64:49–53

    PubMed  CAS  Google Scholar 

  5. Gharabaghi A, Hellwig D, Rosahl SK, et al (2005) Volumetric image guidance for motor cortex stimulation: integration of three-dimensional cortical anatomy and functional imaging. Neurosurgery 57:114–120

    Article  PubMed  Google Scholar 

  6. Gronningsaeter A, Lie T, Kleven A, et al (2000) Initial experience with stereoscopic visualization of three-dimensional ultrasound data in surgery. Surg Endosc 14:1074–1078

    Article  PubMed  CAS  Google Scholar 

  7. Grummich P, Nimsky C, Pauli E, et al (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage 32:1793–1803

    Article  PubMed  Google Scholar 

  8. Hastreiter P, Engel K, Soza G, et al (2003) Remote computing environment compensating for brain shift. Comput Aided Surg 8:169–179

    PubMed  Google Scholar 

  9. Henn JS, Lemole GM Jr, Ferreira MA, et al (2002) Interactive stereoscopic virtual reality: a new tool for neurosurgical education. Technical note. J Neurosurg 96:144–149

    Article  PubMed  Google Scholar 

  10. Hernes TA, Ommedal S, Lie T, et al (2003) Stereoscopic navigation-controlled display of preoperative MRI and intraoperative 3D ultrasound in planning and guidance of neurosurgery: new technology for minimally invasive image guided surgery approaches. Minim Invasive Neurosurg 46:129–137

    Article  PubMed  Google Scholar 

  11. Hinckley K, Pausch R, Downs JH, et al (1997) The props-based interface for neurosurgical visualization. Stud Health Technol Inform 39:552–562

    PubMed  CAS  Google Scholar 

  12. Jannin P, Bouliou A, Journet E, et al (1996) A ray-traced texture mapping for enhanced virtuality in image-guided neurosurgery. Stud Health Technol Inform 29:553–563

    PubMed  CAS  Google Scholar 

  13. Jannin P, Fleig OJ, Seigneuret E, et al (2000) A data fusion environment for multimodal and multi-informational neuronavigation. Comput Aided Surg 5:1–10

    Article  PubMed  CAS  Google Scholar 

  14. John NW (2002) Using stereoscopy for medical virtual reality. Stud Health Technol Inform 85:214–220

    PubMed  Google Scholar 

  15. Johnson LG, Edwards P, Hawkes D (2003) Surface transparency makes stereo overlays unpredictable: the implications for augmented reality. Stud Health Technol Inform 94:131–136

    PubMed  Google Scholar 

  16. King AP, Edwards PJ, Maurer CR Jr, et al (1999) A system for microscope-assisted guided interventions. Stereotact Funct Neurosurg 72:107–111

    Article  PubMed  CAS  Google Scholar 

  17. Kockro RA, Serra L, Tseng-Tsai Y, et al (2000) Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 46:118–135

    Article  PubMed  CAS  Google Scholar 

  18. Kolstad F, Rygh OM, Selbekk T, et al (2006) Three-dimensional ultrasonography navigation in spinal cord tumor surgery. Technical note. J Neurosurg Spine 5:264–270

    PubMed  Google Scholar 

  19. Larsen OV, Haase J, Ostergaard LR, et al (2001) The Virtual Brain Project –development of a neurosurgical simulator. Stud Health Technol Inform 81:256–262

    PubMed  CAS  Google Scholar 

  20. Li Y, Brodlie K, Phillips N (2002) Real-time soft tissue modeling for web-based surgical simulation: Surface Chain Mail. Stud Health Technol Inform 85:261–267

    PubMed  CAS  Google Scholar 

  21. Lindseth F, Kaspersen JH, Ommedal S, et al (2003) Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. Comput Aided Surg 8:49–69

    PubMed  Google Scholar 

  22. Lindseth F, Lango T, Bang J, et al (2002) Accuracy evaluation of a 3D ultrasound-based neuronavigation system. Comput Aided Surg 7:197–222

    Article  PubMed  Google Scholar 

  23. Miller A, Alien P, Fowler D (2004) In-vivo stereoscopic imaging system with 5 degrees-of-freedom for minimal access surgery. Stud Health Technol Inform 98:234–240

    PubMed  Google Scholar 

  24. Mitchell P, Wilkinson ID, Griffiths PD, et al (2002) A stereoscope for image-guided surgery. Br J Neurosurg 16:261–266

    Article  PubMed  CAS  Google Scholar 

  25. Morris K, O’Brien TJ, Cook MJ, et al (2004) A computer-generated stereotactic “Virtual Subdural Grid” to guide resective epilepsy surgery. AJNR Am J Neuroradiol 25:77–83

    PubMed  Google Scholar 

  26. Nimsky C, Ganslandt O, Buchfelder M, et al (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. NeuroI Res 28:482–487

    Article  Google Scholar 

  27. Nimsky C, Ganslandt O, Fahlbusch R (2006) Implementation of fiber tract navigation. Neurosurgery 58:ONS 292–303

    Google Scholar 

  28. Nimsky C, Ganslandt O, Kober H, et al (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44:1249–1255

    Article  PubMed  Google Scholar 

  29. Nimsky C, Grummich P, Sorensen AG, et al (2005) Visualization of the pyramidal tract in glioma surgery by integrating diffusion tensor imaging in functional neuronavigation. Zentralbl Neurochir 66:133–141

    Article  PubMed  CAS  Google Scholar 

  30. Pailatrom H, Hartov A, Mclnerney J, et al (1999) Coregistered ultrasound as a neurosurgical guide. Stereotact Funct Neurosurg. 73:143–147

    Article  Google Scholar 

  31. Peters TM (2000) Image-guided surgery: from X-rays to virtual reality. Comput Methods Biomech Biomed Engin 4:27–57

    Article  PubMed  CAS  Google Scholar 

  32. Peters TM, Henn CJ, Munger P, et al (1994) Integration of stereoscopic DSA and 3D MRI for image-guided neurosurgery. Comput Med Imaging Graph 18:289–299

    Article  PubMed  CAS  Google Scholar 

  33. Rachinger J, von Keller B, Ganslandt O, et al (2006) Application accuracy of automatic registration in frameless stereotaxy. Stereotact Funct Neurosurg. 84:109–117

    Article  PubMed  Google Scholar 

  34. Ribas GC, Bento RF, Rodrigues AJ Jr (2001) Anaglyphic three-dimensional stereoscopic printing: revival of an old method for anatomical and surgical teaching and reporting. J Neurosurg 95:1057–1066

    PubMed  CAS  Google Scholar 

  35. Rosahl SK, Gharabaghi A, Hubbe U, et al (2006) Virtual reality augmentation in skull base surgery. Skull Base 16:59–66

    Article  PubMed  Google Scholar 

  36. Rygh OM, Cappelen J, Selbekk T, et al (2006) Endoscopy guided by an intraoperative 3D ultrasound-based neuronavigation system. Minim Invasive Neurosurg 49:1–9

    Article  PubMed  CAS  Google Scholar 

  37. Sebastiano F, Di Gennaro G, Esposito V, et al (2006) A rapid and reliable procedure to localize subdural electrodes in presurgical evaluation of patients with drug-resistant focal epilepsy. Clin Neurophysiol 117:341–347

    Article  PubMed  CAS  Google Scholar 

  38. Serra L, Kockro R, Goh LC, et al (2002) The DextroBeam: a stereoscopic presentation system for volumetric medical data. Stud Health Technol Inform 85:478–484

    PubMed  Google Scholar 

  39. Shahidi R, Bax MR, Maurer CR Jr, et al (2002) Implementation, calibration and accuracy testing of an image-enhanced endoscopy system. IEEE Trans Med Imaging 21:1524–1535

    Article  PubMed  Google Scholar 

  40. Skare S, Andersson JL (2005) Correction of MR image distortions induced by metallic objects using a 3D cubic B-spline basis set: application to stereotactic surgical planning. Magn Reson Med 54:169–181

    Article  PubMed  CAS  Google Scholar 

  41. Stredney D, Wiet GJ, Bryan J, et al (2002) Temporal bone dissection simulation – an update. Stud Health Technol Inform 85:507–513

    PubMed  CAS  Google Scholar 

  42. Trobaugh JW, Trobaugh DJ, Richard WD (1994) Three-dimensional imaging with stereotactic ultrasonography. Comput Med Imaging Graph 18:315–323

    Article  PubMed  CAS  Google Scholar 

  43. Unsgaard G, Rygh OM, Selbekk T, et al (2006) Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien) 148:235–253

    Article  CAS  Google Scholar 

  44. Walton L, Hampshire A, Forster DM, et al (1996) Accuracy of stereotactic localization using magnetic resonance imaging: a comparison between two- and three-dimensional studies. Stereotact Funct Neurosurg 66:49–56

    Article  PubMed  Google Scholar 

  45. Wang D, Doddrell DM, Cowin G (2004) A novel phantom and method for comprehensive 3-dimensional measurement and correction of geometric distortion in magnetic resonance imaging. Magn Reson Imaging 22:529–542

    Article  PubMed  Google Scholar 

  46. West JB, Fitzpatrick JM, Toms SA, Maurer CR Jr, Maciunas RJ (2001) Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48:810–816

    Article  PubMed  CAS  Google Scholar 

  47. Wilkinson EP, Shahidi R, Wang B, et al (1999) Remote rendered 3D CT angiography (3DCTA) as an intraoperative aid in cerebrovascular neurosurgery. Comput Aided Surg 4:256–263

    Article  PubMed  CAS  Google Scholar 

  48. Winder RI, McKnight W, McRitchie I, Montgomery D, Wulf J (2006) 3D surface accuracy of CAD generated skull defect contour. Stud Health Technol Inform 119:574–576

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosahl, S., Shahidi, R. (2008). The Virtual Operating Field – How Image Guidance can Become Integral to Microneurosurgery. In: Samii's Essentials in Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49250-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49250-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49249-8

  • Online ISBN: 978-3-540-49250-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics