Skip to main content

Links between Mountain Uplift, Climate, and Surface Processes in the Southern Patagonian Andes

  • Chapter
The Andes

Abstract

Miocene surface uplift of the southern Patagonian Andes, related to an episode of rapid plate convergence prior to the ∼14–10 Ma collision of the Chile Ridge with the South American subduction zone, has produced one of the most pronounced orographic rain shadows on Earth. Apatite fission track ages from the western flank of this Andean segment imply that 3–4 km of denudation has occurred in this region since ∼17 Ma. The track-length distribution of the studied samples suggests a complex thermal history with initial cooling followed by reheating, presumably owing to the progressive opening and eastward migration of a slab window after the ridge-trench collision, and ultimately more rapid cooling since ∼4 Ma. These thermochronological data are in good agreement with constraints on the elevation history of the southern Patagonian Andes. Based on sedimentological and geochronological data from ∼23 to ∼14 Ma sedimentary rocks in the eastern foreland, and oxygen isotope data from pedogenic carbonate contained in these deposits, we infer that > 1 km of surface uplift of these mountains occurred between ca. 17 and 14 Ma. Carbon isotope data from the pedogenic carbonate samples demonstrate that this led to strong aridification in the eastern foreland and, presumably, strongly increased precipitation rates on the windward western side of the mountains. Because a thicker trench fill promotes weaker coupling along the plate interface, this implies that progressive surface uplift of the southern Patagonian Andes and the increasing sediment flux to the adjacent segment of the South American trench may have contributed significantly to a decrease in compressive deformation and surface uplift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abruzzese MJ, Waldbauer RJ, Chamberlain CP (2005) Oxygen and hydrogen isotope ratios in freshwater chert as indicators of ancient climate and hydrologic regime. Geochim Cosmochim Acta 69:1377–1390

    Article  Google Scholar 

  • Amundson RG, Chadwick OA, Sowers JM, Doner HM (1989) The stable isotope chemistry of pedogenic carbonates at Kyle Canyon, Nevada. Soil Sci Soc Am J 53:201–210

    Article  Google Scholar 

  • Blisniuk PM, Stern LA (2005) Stable isotope altimetry: a critical review. Am J Sci 305:1033–1074

    Article  Google Scholar 

  • Blisniuk PM, Stern LA, Chamberlain CP, Idleman B, Zeitler PK (2005) Climatic and ecologic changes during Miocene surface uplift in the southern Patagonian Andes, Earth Planet Sci Lett 230:125–142

    Article  Google Scholar 

  • Boffi JA (1949) Effect of the Andes Mountains on the general circulation over the southern part of South America. Bull Am Meteor Soc 30:242–247

    Google Scholar 

  • Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res 91:471–496

    Article  Google Scholar 

  • Cerling TE (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet Sci Lett 71:229–240

    Article  Google Scholar 

  • Cerling TE, Quade J (1993) Stable carbon and oxygen isotopes in soil carbonates. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate Change in continental isotopic records. AGU Geophys Monogr, pp 217–231

    Google Scholar 

  • Chamberlain CP, Poage MA, Craw D, Reynolds RC (1999) Topographic development of the Southern Alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand. Chem Geol 155:279–294

    Article  Google Scholar 

  • Chamberlain CP, Poage MA (2000) Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology, 28:115–118

    Article  Google Scholar 

  • Coplen TB (1995) Reporting of stable carbon, hydrogen, and oxygen isotopic abundances. In: IAEA (ed) Reference and intercomparison material for stable isotopes of light elements, pp 31–34

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 6:436–468

    Article  Google Scholar 

  • Dettman DL, Lohmann KC (2000) Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene. Geology 28:243–246

    Article  Google Scholar 

  • Dettman DL, Fang X, Garzione CN, Li J (2003) Uplift-driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan plateau. Earth Planet Sci Lett 214:267–277

    Article  Google Scholar 

  • Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. Am Mineralogist 84:1224–1234

    Google Scholar 

  • Ernst WG (2004) Regional crustal thickness and precipitation in young mountain chains. Proc Nat Acad Sci 101:14998–15001

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JH, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  Google Scholar 

  • Flynn JJ, Novacek MJ, Dodson HE, Frassinetti D, McKenna MC, Norell MA, Sears KE, Swisher I, Carl C, Wyss AR (2002) A new fossil mammal assemblage from the southern Chilean Andes: implications for geology, geochronology, and tectonics. J S Am Earth Sci 15:285–302

    Article  Google Scholar 

  • Fricke HC (2003) Investigation of early Eocene water-vapor transport and paleoelevation using oxygen isotope data from geographically widespread mammal remains. Geol Soc Am Bull 115: 1088–1096

    Article  Google Scholar 

  • Garzione CN, Dettman DL, Quade J, DeCelles PG, Butler RF (2000) High times on the Tibetan Plateau: paleoelevation of the Thakkhola graben, Nepal. Geology 28:439–442

    Article  Google Scholar 

  • Gorring ML, Kay SM, Zeitler PK, Ramos VA, Rubilio DR, Fernandez MI, Panza JL (1997) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile Triple Junction. Tectonics 16:1–17

    Article  Google Scholar 

  • Graham SA, Chamberlain CP, Yue Y, Ritts BD, Hanson AD, Horton TW, Waldbauer JR, Poage MA, Feng X (2005) Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin. Am J Sci 305:101–118

    Article  Google Scholar 

  • Hartnady CJH, Le Roex AP (1985) Southern Ocean hotspot tracks and the Cenozoic absolute motion of the African, Antarctic and South American plates. Earth Planet Sci Lett 75:245–257

    Article  Google Scholar 

  • Horton TW, Sjostrom DJ, Abruzzese MJ, Poage MA, Waldbauer JR, Hren M, Wooden J, Chamberlain CP (2004) Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada. Am J Sci 304:862–888

    Article  Google Scholar 

  • Hsieh JCC, Chadwick OA, Kelly EF, Savin SM (1998) Oxygen isotopic composition of soil water: quantifying evaporation and transpiration. Geoderma 82:269–293

    Article  Google Scholar 

  • Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Am Mineralogist 84:1235–1255

    Google Scholar 

  • Ketcham RA, Donelick RA, Donelick MB (2000) AFTSolve: a program for multi-kinetic modeling of apatite fission-track data. Geol Mater Res 2:1–32

    Google Scholar 

  • Kohn MJ, Miselis JL, Fremd TJ (2002) Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon. Earth Planet Sci Lett 204:151–165

    Article  Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Article  Google Scholar 

  • Lenters JD, Cook KH (1995) Simulation and diagnosis of the regional summertime precipitation climatology of South America. J Climatol 8:2988–3005

    Article  Google Scholar 

  • Lizuaín A, Leanza HA, Panza JL (1997) Mapa Geológica de la República Argentina 1:2 500 000. Ministerio de Economia y Obras y Servicios Públicos

    Google Scholar 

  • Malumián N, Ramos VA (1984) Magmatic intervals, transgression-regression cycles and oceanic events in the Cretaceous and Tertiary of southern South America. Earth Planet Sci Lett 67:228–237

    Article  Google Scholar 

  • Mercer JH (1976) Glacial history of southermost South America. Quat Res 6:125–166

    Article  Google Scholar 

  • Mercer JH, Sutter JF (1982) Late Miocene-Early Pliocene glaciation in southern Argentina: implications for global ice-sheet history. Palaeogeog Palaeoclimat Palaeoecol 38:185–206

    Article  Google Scholar 

  • Molnar P, England P (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346:29–34

    Article  Google Scholar 

  • Morrill C, Koch PL (2002) Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the Eocene Green River Basin. Geology 30:151–154

    Article  Google Scholar 

  • Norris RD, Jones LS, Corfield RM, Cartlidge JE (1996) Skiing in the Eocene Uinta Mountains? Isotopic evidence in the Green River Formation for snow melt and large mountains. Geology 24: 403–406

    Article  Google Scholar 

  • Pankhurst RJ, Weaver SD, Hervé F, Larrando P (1999) Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysén, southern Chile. J Geol Soc London 156:673–694

    Google Scholar 

  • Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American Plates since late Cretaceous time. Tectonics 6:233

    Google Scholar 

  • Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301:1–15

    Article  Google Scholar 

  • Poage MA, Chamberlain CP (2002) Stable isotopic evidence for a Pre-Middle Miocene rain shadow in the western Basin and Range: implications for the paleotopography of the Sierra Nevada. Tectonics 21: doi 10.1029/2001TC001303

    Google Scholar 

  • Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. In: Schwerdtfeger W (ed) Climates of Central and South America. World Survey of Climatology, pp 13–73

    Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geol Soc Am Bull 101:464–475

    Article  Google Scholar 

  • Ramos VA (1989) Andean foothills structures in northern Magallanes Basin, Argentina. Am Assoc Petrol Geol Bull 73:887–903

    Google Scholar 

  • Ramos VA (2005) Seismic ridge subduction and topography: foreland deformation in the Patagonian Andes. Tectonophysics 399:73–86

    Article  Google Scholar 

  • Ramos VA, Kay SM (1992) Southern Patagonian plateau basalts and deformation: backarc testimony of ridge collisions. Tectonophysics 205:261–282

    Article  Google Scholar 

  • Ramos VA, Kay SM, Sacomani L (1991) La dacita Puesto Nuevo y otras rocas magmaticas (Cordillera Patagonica Austral): Colisión de un dorsal oceanica Cretacica. VII Congreso Geológico Chileno, Abs Vol 2

    Google Scholar 

  • Rowley DB, Pierrehumbert RT, Currie BS (2001) A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet Sci Lett 188:253–268

    Article  Google Scholar 

  • Ruddiman WF, Raymo ME, Prell WL, Kutzbach JE (1997) The uplift-climate connection: a synthesis. In: Ruddiman WF (ed) Tectonic uplift and climate change. Plenum Press, New York London, pp 471–515

    Google Scholar 

  • Seluchi M, Serafini YV, Le Treut H (1998) The impact of the Andes on transient atmospheric systems: a comparison between observations and GCM results. Monthly Weather Rev 126:895–912

    Article  Google Scholar 

  • Sobel ER, Strecker MR (2003) Uplift, exhumation, and precipitation: Tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina. Basin Res 15: doi 10.1046/j.1365-2117.2003.00214.x

    Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 Myr: implications for mountain building in the central Andean region. J S Am Earth Sci 11:211–215

    Article  Google Scholar 

  • Stern LA, Blisniuk PM (2002) Stable isotope composition of precipitation across the southern Patagonian Andes. J Geophys Res 107: doi 10.1029/2002JD002509

    Google Scholar 

  • Suárez M, De La Cruz R (2001) Jurassic to Miocene K-Ar dates from eastern central Patagonian Cordillera plutons, Chile (45°–48° S). Geol Mag 1:53–66

    Article  Google Scholar 

  • Suárez M, De La Cruz R, Bell CM (2000) Timing and origin of deformation along the Patagonian fold and thrust belt. Geol Mag 137: 345–353

    Article  Google Scholar 

  • Takeuchi A, Larson PB (2005) Oxygen isotope evidence for the late Cenozoic development of an orographic rain shadow in eastern Washington, USA. Geology 33:313–316

    Article  Google Scholar 

  • Thomson SN, Hervé F, Stöckhert B (2001) Mesozoic-Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics 20:693–711

    Article  Google Scholar 

  • Warkus F (2002) Die neogene Hebungsgeschichte der Patagonischen Anden im Kontext der Subduktion eines aktiven Spreizungszentrums. PhD thesis, University of Potsdam

    Google Scholar 

  • Welkner DM, Suárez M (1999) Los plutones del área del Cerro San Lorenzo (47°30° S): valores K-Ar y Ar-Ar. XIV Congreso Geológico Argentino, Actas, pp 112–113

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693

    Article  Google Scholar 

  • Ziegler AM, Barret SF, Scotese CR (1981) Palaeoclimate, sedimentation and continental accretion. Phil Trans Royal Soc London A 301:253–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blisniuk, P.M. et al. (2006). Links between Mountain Uplift, Climate, and Surface Processes in the Southern Patagonian Andes. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_20

Download citation

Publish with us

Policies and ethics