Skip to main content

Dynamic Infinite Elements for Soil-Structure Interaction Analysis in a Layered Soil Medium

  • Conference paper
Computational Methods in Engineering & Science
  • 2453 Accesses

Abstract

This paper presents dynamic infinite element formulations which have been developed for soil-structure interaction analysis both in frequency and in time domains by the present authors and our colleagues during the past twenty years. Axisymmetric, 2D and 3D layered half-space soil media were considered in the developments. The displacement shape functions of the infinite elements were established using approximate expressions of analytical solutions in frequency domain to represent the characteristics of multiple waves propagating into the unbounded outer domain of the media. The shape functions were determined in terms of the excitation frequency as well as the spatial and material characteristics of the far-field soil region. Thereby the element mass and stiffness matrices become frequency dependent. As far as time domain analysis, the shape functions were further simplified to obtain closed-form frequency-dependent mass and stiffness matrices, which can analytically be transformed into time domain terms by a continuous Fourier transform. The proposed infinite elements were verified using benchmark examples, which showed that the present formulations are very effective for the soil-structure interaction analysis either in frequency or in time domain. Example applications to actual soil-structure interaction problems are also given to demonstrate the capability and versatility of the present methodology. kg]Key Words

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolf JP. Dynamic Soil-Structure Interaction, Prentice-Hall, 1985.

    Google Scholar 

  2. Ungless RF. An infinite finite element. MS Thesis, University of British Columbia, Vancouver, Canada, 1973.

    Google Scholar 

  3. Bettess P. Infinite elements. Int. J. Num. Meth. Eng., 1977; 11: 54–64.

    Google Scholar 

  4. Astley RJ. Wave envelope and infinite elements for acoustic radiation. Int. J. Num. Meth. Fluids, 1983; 3: 507–526.

    Article  MATH  Google Scholar 

  5. Zienkiewicz OC, Emson C, Bettess P. A novel boundary infinite element. Int. J. Num. Meth. Eng., 1983; 19: 393–404.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow YK, Smith IM. Static and periodic infinite solid elements. Int. J. Num. Meth. Eng., 1981; 17: 503–526.

    Article  MATH  Google Scholar 

  7. Beer G, Meek JL. Infinite domain elements. Int. J. Num. Meth. Eng., 1981; 17: 43–52.

    Article  MATH  Google Scholar 

  8. Lynn PP, Hadid HA. Infinite elements with 1/rn type decay. Int. J. Num. Meth. Eng., 1981; 17: 347–355.

    Article  MathSciNet  MATH  Google Scholar 

  9. Rajapakse RKND, Karasudhi P. Elastostatic infinite elements for layered half space. J. Eng. Mech., ASCE, 1985; 111: 1144–1158.

    Article  Google Scholar 

  10. Koh KH, Lee SR. p-Version static infinite element for representing 1/rn type decay problems in unbounded media. Computers and Geomechanics, 1998; 22: 73–89.

    Article  Google Scholar 

  11. Schrefler BA, Simoni L. Non-isothermal consolidation of unbounded porous media using mapped infinite elements. Comm. Num. Meth. Eng., 1987; 3: 445–452.

    Article  MATH  Google Scholar 

  12. Karpurapu GR. Composite infinite element analysis of unbounded two-phase media. Adv. Eng. Software, 1988; 10: 202–209.

    MATH  Google Scholar 

  13. Honjo Y, Pokharel G. Parametric infinite elements for seepage analysis. Int. J. Num. Anal. Meth. Geomechanics, 1993; 17: 45–66.

    Article  MATH  Google Scholar 

  14. Zhao C, Valliappan S. Transient infinite elements for seepage problems in infinite media. Int. J. Num. Meth. Eng., 1993; 17: 323–341.

    Article  MATH  Google Scholar 

  15. Bettess P, Zienkiewicz OC. Diffraction and refraction of surface waves using finite and infinite elements. Int. J. Num. Meth. Eng., 1977; 11: 1271–1290.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lau SL, Ji Z. An efficient 3-D infinite element for water wave diffraction problems. Int. J. Num. Meth. Eng., 1989; 28: 1371–1387.

    Article  MATH  Google Scholar 

  17. Park WS, Yun CB, Pyun CK. Infinite elements for evaluation of hydrodynamic forces on offshore structures. Computers & Structures, 1991; 40: 837–847.

    Article  Google Scholar 

  18. Park WS, Yun CB, Pyun CK. Infinite elements for 3-dimensional wave-structure interaction problems. Eng. Structures, 1992; 14: 335–346.

    Article  Google Scholar 

  19. Astley RJ, Macaulay GJ, Coyette JP. Mapped wave envelope elements for acoustic radiation and scattering. J. Sound and Vibration, 1994; 170:97–118.

    Article  MATH  Google Scholar 

  20. Bettess P, Abram RA. Finite and infinite elements for a simple problem in quantum mechanics. Comm. Num. Meth. Eng., 2002; 18: 325–334.

    Article  MathSciNet  MATH  Google Scholar 

  21. McDougall MJ, Webb JP. Infinite element for the analysis of open dielectric waveguide. IEEE Trans. Microwave Theory and Techniques, 1999; 37: 1724–1731.

    Article  Google Scholar 

  22. Bettess P. Infinite elements. Penshaw Press, UK, 1992.

    Google Scholar 

  23. Astley, RJ. Infinite elements for wave problems: a review of current formulation and an assessment of accuracy. Int. J. Num. Meth. Eng., 2000; 49: 951–976.

    Article  MATH  Google Scholar 

  24. Medina F, Penzien J. Infinite elements for elastodynamics. Earthq. Eng. & Str. Dyn., 1982; 10:699–709.

    Article  Google Scholar 

  25. Medina F, Taylor RL. Finite element techniques for problems of unbounded domains. Int. J. Num. Meth. Eng., 1983; 19: 1209–1226.

    Article  MATH  Google Scholar 

  26. Rajapakse RKND, Karasudhi P. An efficient elastodynamic infinite element. Int. J. Solids & Structures, 1986; 22: 643–657.

    Article  MATH  Google Scholar 

  27. Yang SC, Yun CB. Axisymmetric infinite elements for soil-structure interaction analysis. Eng. Structures, 1992; 14: 361–370.

    Article  MATH  Google Scholar 

  28. Karasudhi P, Liu YC. Vibration of elastic and viscoelastic multi-layered spaces. Str. Eng. & Mech., 1993; 1: 103–118.

    Google Scholar 

  29. Zhang C, Zhao C. Coupling method of finite and infinite elements for strip foundation wave problems. Earthq. Eng. & Str. Dyn., 1987; 15: 839–851.

    Article  Google Scholar 

  30. Yun CB, Kim JM, Hyun CH. Axisymmetric elastodynamic infinite elements for multi-layered half-space. Int. J. Numer. Meth. Eng., 1995; 38: 3723–3743.

    Article  MATH  Google Scholar 

  31. Yang YB, Hung HH. A 2.5D finite/infinite element approach for modelling visco-elastic bodies subjected to moving loads. Int. J. Num. Meth. Eng., 2001; 51: 1317–1336.

    Article  MATH  Google Scholar 

  32. Zhao C, Valliappan S. A dynamic infinite element for three-dimensional infinite-domain wave problems. Int. J. Numer. Meth. Eng., 1993; 36: 2567–2580.

    Article  MATH  Google Scholar 

  33. Park KR. Development of three-dimensional frequency-dependent dynamic infinite elements for multi-layered elastic media. PhD Thesis, Kyoto University, Japan, 2004.

    Google Scholar 

  34. Seo CK, Yun CB, Kim JM. Three-dimensional cuboidal infinite elements for soil-structure interaction analysis in multi-layered half-space. (in preparation).

    Google Scholar 

  35. Khalili N, Valliappan S, Yazdi JT, Yazdchi M. 1D infinite element for dynamic problems in saturated porous media. Comm. Num. Meth. Eng., 1997; 13: 727–738.

    Article  MathSciNet  MATH  Google Scholar 

  36. Khalili N, Yazdchi M, Valliappan S. Wave propagation of two-phase saturated porous media using coupled finite-infinite element method. Soil Dyn. & Earthq. Eng., 1999; 18: 533–553.

    Article  Google Scholar 

  37. Kim JM. Two-dimensional infinite element for dynamic analysis of saturated two-phase soil. J. Earthq. Eng. Soc. Korea, 2005; 9: 67–74.

    Google Scholar 

  38. Wang G, Chen L, Song C. Finite-infinite element for dynamic analysis of axisymmetrically saturated composite foundations. Int. J. Num. Meth. Eng., 2006 (in press).

    Google Scholar 

  39. Yun CB, Kim DK, Kim JM. Analytical frequency-dependent infinite elements for soil-structure interaction analysis in two-dimensional medium. Eng. Structures, 2000; 22: 258–271.

    Article  Google Scholar 

  40. Kim DK, Yun CB. Time domain soil-structure interaction in two-dimensional medium based on analytical frequency-dependent infinite elements. Int. J. Num. Meth. Eng., 2000; 47: 1241–1261.

    Article  MATH  Google Scholar 

  41. Kim DK, Yun CB. Earthquake response analysis in time domain for 2-D soil-structure systems using analytical frequency-dependent infinite elements. Str. Eng. Mechanics, 2003; 15: 717–733.

    Google Scholar 

  42. Yun CB, Choi JS, Kim JM. Identification of the Hualien soil-structure interaction system. Soil Dyn. & Earthq. Eng., 1999; 18: 395–408.

    Article  Google Scholar 

  43. Choi JS, Yun CB, Kim JM. Earthquake response analysis of the Hualien large scale seismic test structure using updated soil-structure properties based on vibration test data. Earthq. Eng. & Str. Dyn., 2001; 30: 1–26.

    Article  Google Scholar 

  44. Choi JS, Lee JS, Yun CB. Input and system identification of the Hualien soil-structure interaction system using earthquake response data. Earthq. Eng. & Str. Dyn., 2003; 32: 1955–1975.

    Article  Google Scholar 

  45. Choi JS, Lee JS, Yun CB. Identification of the soil-structure interaction system using earthquake response data. J. Engrg. Mech., ASCE, 2004; 130:753–761.

    Article  Google Scholar 

  46. Kim JM, Jang SH, Yun CB. Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading. Str. Eng. Mechanics, 2002; 13:615–638.

    Google Scholar 

  47. Yun CB, Kim JM. KIESSI-A computer program for soil-structure interaction analysis using finite and infinite element techniques. Res. Rep., Dept. of Civil Eng., KAIST, Korea, 1996.

    Google Scholar 

  48. Tassoulas JL. Elements for the numerical analysis of wave motion in layered media. PhD Thesis, MIT, Cambridge, Mass., USA, 1981.

    Google Scholar 

  49. Luco JE. Impedance functions for a rigid foundation on a layered medium. Nucl. Eng. Des., 1974; 31:204–217.

    Article  Google Scholar 

  50. Chow YK. Vertical vibration of three-dimensional rigid foundation on layered media. Earthq. Eng. & Str. Dyn., 1987; 15: 585–594.

    Article  Google Scholar 

  51. Chen CH, Penzien J. Dynamic modeling of axisymmetric foundation. Earthq. Eng. and Str. Dyn., 1986; 14: 823–840.

    Article  Google Scholar 

  52. ANSYS Inc., ANSYS 5.5, User’s Reference Manual, 1999.

    Google Scholar 

  53. Schnabel PB, Lysmer J, Seed HB. SHAKE91 — A computer program for earthquake response analysis of horizontally layered sites. Earthquake Engineering Research Center, UCB, USA, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Tsinghua University Press & Springer

About this paper

Cite this paper

Yun, C.B., Kim, J.M. (2006). Dynamic Infinite Elements for Soil-Structure Interaction Analysis in a Layered Soil Medium. In: Computational Methods in Engineering & Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48260-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48260-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48259-8

  • Online ISBN: 978-3-540-48260-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics