Skip to main content

Making and Retaining New Memories: The Role of the Hippocampus in Associative Learning and Memory

  • Chapter
Memories: Molecules and Circuits

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 747 Accesses

Abstract

The groundbreaking description of the amnesic patient H.M. in the 1950s (Scoville and Milner 1957) demonstrated for the first time that the structures of the medial temporal lobe are critical for our ability to learn and retain new long-term memories for facts and events. This critical form of memory is referred to as declarative memory in humans (Squire et al. 2004) and relational memory in animals (Eichenbaum et al. 1999). The development of powerful animal models of human amnesia in monkeys (Zola-Morgan and Squire 1990; Mishkin 1978; Zola and Squire 2000; Suzuki et al. 1993) and in rodents (Bunsey and Eichenbaum 1993,1995, 1996; Fortin et al. 2002), together with detailed neuroanatomical studies (Suzuki and Amaral 1994a,b; Burwell and Amaral 1998a,b), demonstrated definitively that the key medial temporal lobe structures important for declarative/relational memory include the hippocampus together with the surrounding entorhinal, perirhinal and parahippocampal cortices. While this convergence of studies in humans and animals has provided detailed information about the pattern of memory impairment following a wide range of lesions to the medial temporal lobe, less information is known about how individual cells in the intact medial temporal lobe participate in the acquisition, consolidation or retrieval of various forms of declarative/relational memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker CL, Behrmann M, Olson CR (2002) Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nature Neurosci 5:1210–1216

    Article  PubMed  CAS  Google Scholar 

  • Bayley PJ, Gold JJ, Hopkins RO, Squire LR (2005) The neuroanatomy of remote memory. Neuron 46:799–810

    Article  PubMed  CAS  Google Scholar 

  • Brasted PJ, Bussey TJ, Murray EA, Wise SP (2002) Fornix transection impairs conditional visuomotor learning in tasks involving nonspatially differentiated responses. J Neurophysiol 87:631–633

    PubMed  Google Scholar 

  • Brasted PJ, Bussey TJ, Murray EA, Wise SP (2003) Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126:1202–1223

    Article  PubMed  CAS  Google Scholar 

  • Bunsey M, Eichenbaum H (1993) Critical role of the parahippocampal region for paired-associate learning in rats. Behav Neurosci 107:740–747

    Article  PubMed  CAS  Google Scholar 

  • Bunsey M, Eichenbaum H (1995) Selective damage to the hippocampal region blocks long term retention of a natural and nonspatial stimulus-stimulus association. Hippocampus 5:546–556

    Article  PubMed  CAS  Google Scholar 

  • Bunsey M, Eichenbaum H (1996) Conservation of hippocampal memory functions in rats and humans. Nature 379:255–257

    Article  PubMed  CAS  Google Scholar 

  • Burwell RD, Amaral DG (1998a) Cortical afferents of the perirhinal, postrhinal and entorhinal cortices. J Comp Neurol 398:179–205

    Article  PubMed  CAS  Google Scholar 

  • Burwell RD, Amaral DG (1998b) Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol 391:293–321

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H (1999) The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron 23:209–226

    Article  PubMed  CAS  Google Scholar 

  • Erickson CA, Desimone R (1999) Responses of macaque perirhinal neurons during and after visual stimulus association learning. J Neurosci 19:10404–10416

    PubMed  CAS  Google Scholar 

  • Erickson CA, Jagadeesh B, Desimone R (2000) Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys. Nature Neurosci 3:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Fahy FL, Riches IP, Brown MW (1993) Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp Brain Res 96:457–472

    Article  PubMed  CAS  Google Scholar 

  • Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus in memory for sequences of events. Nature Neurosci 5:458–462

    PubMed  CAS  Google Scholar 

  • Kobatake E, Wang G, Tanaka K (1998) Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol 80:324–330

    PubMed  CAS  Google Scholar 

  • Li L, Miller EK, Desimone R (1993) The representation of stimulus familiarity in anterior inferior temporal cortex. J Neurophysiol 69:1918–1929

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J (1995) Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cereb Cortex 3:270–288

    Article  Google Scholar 

  • Messinger A, Squire LR, Zola SM, Albright TD (2001) Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proc Natl Acad Sci USA 98:12239–12244

    Article  PubMed  CAS  Google Scholar 

  • Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273:297–298

    Article  PubMed  CAS  Google Scholar 

  • Moody SL, Wise SP, di Pellegrino G, Zipser DA (1998) A model that accounts for activity in primate frontal cortex during a delayed matching to sample task. J Neurosci 18:399–410

    PubMed  CAS  Google Scholar 

  • Murray EA, Wise SP (1996) Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav Neurosci 110:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Murray EA, Bussey TJ, Wise SP (2000) Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Exp Brain Res 133:114–129

    Article  PubMed  CAS  Google Scholar 

  • Naya Y, Yoshida M, Miyashita Y (2003) Forward processing of long-term associative memory in monkey inferotemporal cortex. J Neurosci 23:2861–2871

    PubMed  CAS  Google Scholar 

  • Nyberg L, McIntosh AR, Cabeza R, Habib R, Houle S, Tulving E (1996a) General and specific brain regions involved in encoding and retrieval of events: What, where, and when. Proc Natl Acad Sci USA 93:11280–11285

    Article  PubMed  CAS  Google Scholar 

  • Nyberg L, McIntosh AR, Houle S, Nilsson LG, Tulving E (1996b) Activation of medial temporal structures during episodic memory retrieval. Nature 380:715–717

    Article  PubMed  CAS  Google Scholar 

  • Riches IP, Wilson FA, Brown MW (1991) The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J Neurosci 11:1763–1779

    PubMed  CAS  Google Scholar 

  • Rupniak NM, Gaffan D (1987) Monkey hippocampus and learning about spatially directed movements. J Neurosci 7:2331–2337

    PubMed  CAS  Google Scholar 

  • Sakai K, Miyashita Y (1991) Neural organization for the long-term memory of paired associates. Nature 354:152–155

    Article  PubMed  CAS  Google Scholar 

  • Schacter DL, Wagner AD (1999) Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus 9:7–24

    Article  PubMed  CAS  Google Scholar 

  • Schacter DL, Reiman E, Uecker A, Polster MR, Yun LS, Cooper LA (1995) Brain regions associated with retrieval of structurally cohrent visual infomation. Nature 376:587–590

    Article  PubMed  CAS  Google Scholar 

  • Schacter DL, Alpert NM, Savage CR, Rauch SL, Albert MS (1996) Conscious recollection and the human hippocampal formation: Evidence from positron emission tomography. Proc Natl Acad Sci USA 93:321–325

    Article  PubMed  CAS  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psych 20:11–21

    CAS  Google Scholar 

  • Sigala N, Gabbiani F, Logothetis NK (2002) Visual categorization and object representation in monkeys and humans. J Cogn Neurosci 14:187–198

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Clark RE, Bailey PJ (2004) Medial temporal lobe function and memory. In: Gazzaniga M (ed) The cognitive neurosciences III. The MIT Press, Cambridge, pp 691–708

    Google Scholar 

  • Suzuki WA, Amaral DG (1994a) Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. J Comp Neurol 350:497–533

    Article  PubMed  CAS  Google Scholar 

  • Suzuki WA, Amaral DG (1994b) Topographic organization of the reciprocal connections between monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14:1856–1877

    PubMed  CAS  Google Scholar 

  • Suzuki WA, Zola-Morgan S, Squire LR, Amaral DG (1993) Lesions of the perirhinal and parahip-pocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J Neurosci 13:2430–2451

    PubMed  CAS  Google Scholar 

  • Wirth S, Yanike M, Frank LM, Smith AC, Brown EN, Suzuki WA (2003) Single neurons in the monkey hippocampus and learning of new associations. Science 300:1578–1581

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Murray EA (1999) Role of the hippocampal system in conditional motor learning: Mapping antecedents to action. Hippocampus 9:101–117

    Article  PubMed  CAS  Google Scholar 

  • Yanike M, Wirth S, Suzuki WA (2004) Representation of well-learned information in the monkey hippocampus. Neuron 42:477–487

    Article  PubMed  CAS  Google Scholar 

  • Zola SM, Squire LR (2000) The medial temporal lobe and the hippocampus. In: Tulving E, Craik FIM (eds) The Oxford handbook of memory. Oxford: Oxford University Press 485–500

    Google Scholar 

  • Zola-Morgan S, Squire LR (1990) The neuropsychology of memory. Parallel findings in humans and nonhuman primates. Ann NY Acad Sci 608:434–450

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, W.A. (2007). Making and Retaining New Memories: The Role of the Hippocampus in Associative Learning and Memory. In: Bontempi, B., Silva, A.J., Christen, Y. (eds) Memories: Molecules and Circuits. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45702-2_8

Download citation

Publish with us

Policies and ethics