Skip to main content

Overview

  • Chapter
  • First Online:
Ferroelectric Random Access Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 93))

Abstract

A review on ferroelectric thin films used for nonvolatile random access memories is given. Particular attention is paid to fundamental limitations on the materials. Optimization of ferroelectric films by impurity doping and grain-size control is first discussed; then size effects are considered (both thickness and lateral dimensions) from the point of view of both depolarization field instabilities and electrical breakdown mechanisms. Finally, dynamic characteristics such as polarization switching and retention are discussed, in which a theory on polarization reversal is presented and three characteristic fields, the breakdown field, the coercive field, and the activation field, are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Scott, J.F. Overview. In: Ishiwara, H., Okuyama, M., Arimoto, Y. (eds) Ferroelectric Random Access Memories. Topics in Applied Physics, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45163-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45163-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40718-8

  • Online ISBN: 978-3-540-45163-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics