Skip to main content

Nonlinear Interactions of Light and Matter with Absorption

  • Chapter
Photonics
  • 3006 Accesses

Abstract

As described in the introduction of Chap. 4, including Sects. 4.1 and 4.2. nonlinear interactions of light with matter are of fundamental importance for photonic applications. It may be worth with reading these three sections before continuing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. {Sect. 5.2} M. Colice, F. Schlottau, K.H. Wagner: Broadband radiofrequency spectrum analysis in spectral-hole-burning media, Appl Opt 45, p.6393–6408 (2006)

    Article  ADS  Google Scholar 

  2. {Sect. 5.2} F. Schlottau, M. Colice, K.H. Wagner, W.R. Babbitt: Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis, Optics Letters 30, p.3003–3005 (2005)

    Article  ADS  Google Scholar 

  3. {Sect. 5.2} H. Talon, L. Fleury, J. Bernard, M. Orrit: Fluorescence excitation of single molecules, J. Opt. Soc. Am. B 9, p.825–827 (1992)

    Article  ADS  Google Scholar 

  4. {Sect. 5.2} L.L. Wald, E.L. Hahn, M. Lukac: Variation of the Pr3+ nuclear quadrupole resonance spectrum across the inhomogeneous optical line in Pr3+:LaF3, J. Opt. Soc. Am. B 9, p.789–793 (1992)

    Article  ADS  Google Scholar 

  5. {Sect. 5.2} K.-P. Müller, D. Haarer: Spectral Diffusion of Optical Transitions in Doped Polymer Glasses below 1 K, Phys. Rev. Lett. 66, p.2344–2347 (1991)

    Article  ADS  Google Scholar 

  6. {Sect. 5.2} W. Kaiser, A. Seilmeier: Redistribution of Vibrational Energy in Solution, Ber. Bunsenges. Phys. Chem. 91, p.1201–1205 (1987)

    Google Scholar 

  7. {Sect. 5.2} A.B. Myers, M.O. Trulson, J.A. Pardoen, C. Heeremans, J. Lugtenburg, R.A. Methies: Absolute resonance Raman intensities demonstrat that the spectral broadening induced by the beta-ionone ring in retinal is homogeneous, J. Chem. Phys. 84, p.633–640 (1986)

    Article  ADS  Google Scholar 

  8. {Sect. 5.2} J.R. Morgan, M.A. El-Sayed: Temperature dependence of the homogeneous linewidth of the 5D0-7F0 transition of Eu3+ in amorphous hosts at high temperatures, Chem. Phys. Lett. 84, p.213–216 (1981)

    Article  ADS  Google Scholar 

  9. {Sect. 5.2} A.P. Marchetti, W.C. McColgin, J.H. Eberly: Inhomogeneous Broadening and Excited-Vibrational-State Lifetimes in Low-Temperature Organic Mixed Crystals, Phys. Rev. Lett. 35, p.387–390 (1975)

    Article  ADS  Google Scholar 

  10. {Sect. 5.2} D.W. Vahey: Effects of spectral cross relaxation and collisional dephasing on the absorption of light by organic-dye solutions, Phys. Rev. A 10, p.1578–1590 (1974)

    Article  ADS  Google Scholar 

  11. {Sect. 5.3.1} J.F. Giuliani: Saturable Absorption and Q Switching in a Triphenylmethene Dye, J. Appl. Phys. 43, p.1290–1291 (1972)

    Article  ADS  Google Scholar 

  12. {Sect. 5.3.1} E.G. Arthurs, D.J. Bradley, A.G. Roddie: Photoisomer Generation and Absorption Relaxation in the Mode-Locking Dye 3,3′-Diethyloxa-dicarbocynaine Iodide, Opt. Comm. 8, p.118–123 (1973)

    Article  ADS  Google Scholar 

  13. {Sect. 5.3.1} B.H. Soffer: Giant Pulse Laser Operation by a Passive, Reversible Bleachable Absorber, J. Appl. Phys. 35, p.2551 (1964)

    Article  ADS  Google Scholar 

  14. {Sect. 5.3.1} H.S. Loka, S.D. Benjamin, P.W.E. Smith: Optical Characterization of Low-Temperature-Grown GaAs for Ultrafast All-Optical Switching Devices, IEEE J. QE-34, p.1426–1436 (1998)

    Article  Google Scholar 

  15. {Sect. 5.3.2} R. BurlotLoison, J.L. Doualan, P. LeBoulanger, T.P.J. Han, H.G. Gallagher, R. Moncorge, G. Boulon: Excited-state absorption of Er3+-doped LiNbO3, J Appl Phys 85, p.4165–4170 (1999)

    Article  ADS  Google Scholar 

  16. {Sect. 5.3.2} F.Z. Henari, H. Manaa, K.P. Kretsch, W.J. Blau, H. Rost, S. Pfeiffer, A. Teuschel, H. Tillmann, H.H. Horhold: Effective stimulated emission and excited state absorption measurements in the phenylene-vinylene oligomer (1,4-bis-(Alpha-cyanostyryl)-2,5-dimethoxybenzene)), Chem Phys Lett 307, p.163–166 (1999)

    Article  ADS  Google Scholar 

  17. {Sect. 5.3.2} N.V. Kuleshov, A.V. Podlipensky, V.G. Shcherbitsky, A.A. Lagatsky, V.P. Mikhailov: Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite, Optics Letters 23, p. 1028–1030 (1998)

    Article  ADS  Google Scholar 

  18. {Sect. 5.3.2} M.F. Hazenkamp, H.U. Gudel, S. Kuck, G. Huber, W. Rauw, D. Reinen: Excited state absorption and laser potential of Mn5+-doped Li3PO4, Chem Phys Lett 265, p.264–270 (1997)

    Article  ADS  Google Scholar 

  19. {Sect. 5.3.2} H. Miyasaka, T. Nobuto, A. Itaya, N. Tamai, M. Irie: Picosecond laser photolysis studies on a photochromic dithienylethene in solution and in crystalline phases, Chem Phys Lett 269, p.281–285 (1997)

    Article  ADS  Google Scholar 

  20. {Sect. 5.3.2} D.K. Palit, A.V. Sapre, J.P. Mittal: Picosecond studies on the electron transfer from pyrene and perylene excited singlet states to N-hexadecyl pyridinium chloride, Chem Phys Lett 269, p.286–292 (1997)

    Article  ADS  Google Scholar 

  21. {Sect. 5.3.2} K.V. Yumashev, N.V. Kuleshov, P.V. Prokoshin, A.M. Malyarevich, V.P. Mikhailov: Excited state absorption of Cr4+ ion in forsterite, Appl Phys Lett 70, p.2523–2525 (1997)

    Article  ADS  Google Scholar 

  22. {Sect. 5.3.2} R. Moncorge, H. Manaa, F. Deghoul, Y. Guyot, Y. Kalisky, S.A. Pollack, E.V. Zharikov, M. Kokta: Saturable and excited state absorption measurements in Cr4+:LuAG single crystals, Opt Commun 132, p.279–284 (1996)

    Article  ADS  Google Scholar 

  23. {Sect. 5.3.2} R. Sander, V. Herrmann, R. Menzel: Transient Absorption Spectra and Bleaching of 4-n-Pentyl-4-Cyanoterphenyl in Cyclohexane — Determination of Cross Sections and Recovery Times, J. Chem. Phys. 104, p.4390–4395 (1996)

    Article  ADS  Google Scholar 

  24. {Sect. 5.3.2} H.J. Eichler, R. Macdonald, R. Menzel, R. Sander: Excited State absorption of 5CB (4′-n-pentyl-4-cyanobiphenyl) in cyclohexane, Chem. Phys. 195, p.381–386 (1995)

    Article  Google Scholar 

  25. {Sect. 5.3.2} R. Menzel, H. Lueck: Conformation Dependent Excited State Absorptions of 3,3″,5,5″-Tetramethyl-Para-Terphenyl, Chem. Phys. 124, p.417–424 (1988)

    Article  ADS  Google Scholar 

  26. {Sect. 5.3.2} F.E. Doany, E.J. Heilweil, R. Moore, R.M. Hochstrasser: Picosecond study of an intermediate in the trans to cis isomerization pathway of stiff stilbene, J. Chem. Phys. 80, p.201–206 (1984)

    Article  ADS  Google Scholar 

  27. {Sect. 5.3.2} R. Menzel, W. Rapp: Excited Singlet-and Triplet-Absorptions of Pentaphene, Chem. Phys. 89, p.445–455 (1984)

    Article  Google Scholar 

  28. {Sect. 5.3.2} V. Sundstrom, T. Gillbro: Dynamics of the isomerization of trans-stilbene in n-alcohols studied by ultraviolet picosecond absorption recovery, Chem. Phys. Lett. 109, p.538–543 (1984)

    Article  ADS  Google Scholar 

  29. {Sect. 5.3.2} D.W. Boldridge, G.W. Scott: Excited state spectroscopy of 1,5-naphthyridine: Identification of the lowest energy excited singlet state as 1Bg (1nPI*), J. Chem. Phys. 79, p.3639–3644 (1983)

    Article  ADS  Google Scholar 

  30. {Sect. 5.3.2} T. Sugawara, H. Iwamura, N. Nakashima, K. Yoshihara: Transient absorption spectra of the excited states of triptycene and 3-acetyltriptycene, Chem. Phys. Lett. 101, p.303–306 (1983)

    Article  ADS  Google Scholar 

  31. {Sect. 5.3.2} M. Sumitani, K. Yoshihara: Direct Observation of the Rate for Cis-Trans and Trans-Cis Photoisomerization of Stilbene with Picosecond Laser Photolysis, Bull. Chem. Soc. Japan 55, p.85–89 (1982)

    Article  Google Scholar 

  32. {Sect. 5.3.2} F.E. Doany, B.I. Greene, R.M. Hochstrasser: Excitation energy effects in the photophysics of trans-stilbene in solution, Chem. Phys. Lett. 75, p.206–208 (1980)

    Article  ADS  Google Scholar 

  33. {Sect. 5.3.2} B.I. Greene, R.M. Hochstrasser, R. Weisman: Picosecond dynamics of the photoisomerization of trans-stilbene under collision-free conditions, J. Chem. Phys. 71, p.544–545 (1979)

    Article  ADS  Google Scholar 

  34. {Sect. 5.3.2} K. Yoshihara, A. Namiki, M. Sumitami, N. Nakashima: Picosecond flash photolysis of cis-and trans-stilbene. Observation of an intense intramolecular charge-resonance transition, J. Chem. Phys. 71, p.2892–2895 (1979)

    Article  ADS  Google Scholar 

  35. {Sect. 5.3.2} O. Teschke, E.P. Ippen, G.R. Holtom: Picosecond dynamics of the singlet excited state of trans-and cis-stilbene, Chem. Phys. Lett. 52, p.233–235 (1977)

    Article  ADS  Google Scholar 

  36. {Sect. 5.3.2} D.S. Kliger, A.C. Albrecht: Nanosecond Excited-State Polarized Absorption Spectroscopy of Anthracene in the Visible Region, J. Chem. Phys. 50, p.4109–4111 (1969)

    Article  ADS  Google Scholar 

  37. {Sect. 5.3.2} A. Müller, E. Pflüger: Laser-flashspectroscopy of cryptocyanine, Chem. Phys. Lett. 2, p.155–159 (1968)

    Article  Google Scholar 

  38. {Sect. 5.3.2} A. Müller: Kinetische Laser-Blitzspektroskopie organischer Moleküle, Z. Naturforsch. 23, p.946–949 (1968)

    Google Scholar 

  39. {Sect. 5.3.2} J.R. Novak, M.W. Windsor: Laser photolysis and spectroscopy: a new technique for the study of rapid reactions in the nanosecond time range, Proc. Roy. Soc. A. 308, p.95–110 (1968)

    Article  ADS  Google Scholar 

  40. {Sect. 5.3.3} J. Barroso, A. Costela, I. Garciamoreno, R. Sastre: Wavelength dependence of the nonlinear absorption properties of laser dyes in solid and liquid solutions, Chem Phys 238, p.257–272 (1998)

    Article  Google Scholar 

  41. {Sect. 5.3.3} M. Samoc, A. Samoc, B. LutherDavies, H. Reisch, U. Scherf: Saturable absorption in poly (indenofluorene): A picket-fence polymer, Optics Letters 23, p.1295–1297 (1998)

    Article  ADS  Google Scholar 

  42. {Sect. 5.3.3} S.H. Yim, D.R. Lee, B.K. Rhee, D. Kim: Nonlinear absorption of Cr4+:YAG studied with lasers of different pulsewidths, Appl Phys Lett 73, p.3193–3195 (1998)

    Article  ADS  Google Scholar 

  43. {Sect. 5.3.3} M. Wittmann, R. Rotermund, R. Weigand, A. Penzkofer: Saturable absorption and absorption recovery of indocyanine green Jaggregates in water, Appl. Phys. B 66, p.453–459 (1998)

    Article  ADS  Google Scholar 

  44. {Sect. 5.3.3} S. Oberländer, D. Leupold: Instantaneous fluorescence quantum yield of organic molecular systems: information content of ist intensity dependence, J. Luminesc. 59, p.125–133 (1994)

    Article  Google Scholar 

  45. {Sect. 5.3.3} R. Menzel, P. Witte: Recovery Time of the Bleached S1 — Sn — Absorption of Para-Terphenyl in Solution.Recovery Time of the Bleached S1 — Sn — Absorption of Para-Terphenyl in Solution, Chem. Phys. Lett. 164, p.27–32 (1989)

    Article  ADS  Google Scholar 

  46. {Sect. 5.3.3} R. Menzel, D. Leupold: Nonlinear Absorptions of Cryptocyanine, Chem. Phys. Lett. 65, p.120–126 (1979)

    Article  ADS  Google Scholar 

  47. {Sect. 5.3.3} J.L. Hall, C. Bordé: Measurement of Methane Hyperfine Structure Using Laser Saturated Absorption, Phys. Rev. Lett. 30, p.1101–1104 (1973)

    Article  ADS  Google Scholar 

  48. {Sect. 5.3.3} M. Hercher: An Analysis of Saturable Absorbers, Appl. Opt. 6, p.947–954 (1967)

    Article  ADS  Google Scholar 

  49. {Sect. 5.3.3} A. Peda’el, R. Daisy, M. Horowitz, B. Fischer: Beam couplinginduced transparency in a bacteriorhodopsin-based saturable absorber, Opt. Lett. 23, p.1173–1175 (1998)

    Article  ADS  Google Scholar 

  50. {Sect. 5.3.3} F.E. Hernandez, W. Shensky, I. Cohanoschi, D.J. Hagan, E.W. VanStryland: Viscosity dependence of optical limiting in carbon black suspensions, Appl Opt 41, p.1103–1107 (2002)

    Article  ADS  Google Scholar 

  51. {Sect. 5.3.3} S.C. Pu, M.J. Yang, C.C. Hsu, C.W. Lai, C.C. Hsieh, S.H. Lin, Y.M. Cheng, P.T. Chou: The empirical correlation between size and twophoton absorption cross section of CdSe and CdTe quantum dots, Small 2, p.1308–1313 (2006)

    Article  Google Scholar 

  52. {Sect. 5.3.3} D.V. Kartashov, A.V. Kirsanov, A.M. Kiselev, A.N. Stepanov, N.N. Bochkarev, Y.N. Ponomarev, B.A. Tikhomirov: Nonlinear absorption of intense femtosecond laser radiation in air, Opt Express 14, p.7552–7558 (2006)

    Article  ADS  Google Scholar 

  53. {Sect. 5.3.3} C.P. Singh, K.S. Bindra, B. Jain, S.M. Oak: All-optical switching characteristics of metalloporphyrins, Opt Commun 245, p.407–414 (2005)

    Article  ADS  Google Scholar 

  54. {Sect. 5.3.3} G.S. He, Q.D. Zheng, C.G. Lu, P.N. Prasad: Two-and three-photon absorption based optical limiting and stabilization using a liquid dye, IEEE J Quantum Electron 41, p. 1037–1043 (2005)

    Article  ADS  Google Scholar 

  55. {Sect. 5.3.3} M. Chen, C.F. Li, Y.D. Zhang, M. Xu, S.J. Ma, W.B. Wang, Y.X. Xia: Optical limiter with an organic solution sandwiched between a polymer slab and a polymer grating, Appl Opt 44, p.4976–4979 (2005)

    Article  ADS  Google Scholar 

  56. {Sect. 5.3.3} J.H. Xu, G.C. LaRocca, F. Bassani, D. Wang, J.Y. Gao: Electromagnetically induced one-photon and two-photon transparency in rubidium atoms, Opt Commun 216, p.157–164 (2003)

    Article  ADS  Google Scholar 

  57. {Sect. 5.3.3} O. Lammel, A. Penzkofer, T. Tsuboi: Picosecond laser saturable absorption studies on F-2(-) colour centres in LiF crystal, Opt Commun 206, p.389–400 (2002)

    Article  ADS  Google Scholar 

  58. {Sect. 5.3.3} P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K.L. Tan: Electronic structure and optical limiting behavior of carbon nanotubes, Phys Rev Lett 82, p.2548–2551 (1999)

    Article  ADS  Google Scholar 

  59. {Sect. 5.3.3} B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, V. Dentan: Photoinduced intramolecular chargetransfer systems based on porphyrin-viologen dyads for optical limiting, Chem Phys Lett 300, p.169–176 (1999)

    Article  ADS  Google Scholar 

  60. {Sect. 5.3.3} D. Leupold, H. Stiel, J. Ehlert, F. Nowak, K. Teuchner, B. Voigt, M. Bandilla, B. Ücker, H. Scheer: Photophysical characterization of the B800-depleted light harvesting complex B850 of Rhodobacter sphaeroides Implication to the ultrafast energy transfer 800-580 nm, Chem. Phys. Lett. 301, p.537–545 (1999)

    Article  ADS  Google Scholar 

  61. {Sect. 5.3.3} G.S. He, C. Weder, P. Smith, P.N. Prasad: Optical power limiting and stabilization based on a novel polymer compound, IEEE J QE-34, p.2279–2285 (1998)

    Article  Google Scholar 

  62. {Sect. 5.3.3} M.P. Joshi, J. Swiatkiewicz, F.M. Xu, P.N. Prasad: Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting, Optics Letters 23, p.1742–1744 (1998)

    Article  ADS  Google Scholar 

  63. {Sect. 5.3.3} W. Lozano, C.B. deAraujo, L.H. Acioli, Y. Messaddeq: Negative nonlinear absorption in Er3+-doped fluoroindate glass, J Appl Phys 84, p.2263–2267 (1998)

    Article  ADS  Google Scholar 

  64. {Sect. 5.3.3} S.R. Mishra, H.S. Rawat, M. Laghate: Nonlinear absorption and optical limiting IN metalloporphyrins, Opt Commun 147, p.328–332 (1998)

    Article  ADS  Google Scholar 

  65. {Sect. 5.3.3} M. Pittman, P. Plaza, M.M. Martin, Y.H. Meyer: Subpicosecond reverse saturable absorption in organic and organometallic solutions, Opt Commun 158, p.201–212 (1998)

    Article  ADS  Google Scholar 

  66. {Sect. 5.3.3} M. Brunei, F. Chaput, S.A. Vinogradov, B. Campagne, M. Canva, J.P. Boilot, A. Brun: Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels, Chem Phys 218, p.301–307 (1997)

    Article  Google Scholar 

  67. {Sect. 5.3.3} G.S. He, L.X. Yuan, J.D. Bhawalkar, P.N. Prasad: Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system, Appl Opt 36, p.3387–3392 (1997)

    Article  ADS  Google Scholar 

  68. {Sect. 5.3.3} G.S. He, G.C. Xu, P.N. Prasad, B.A. Reinhardt, J.C. Bhatt, A.G. Dillard: Two photon absorption and optical limiting properties of novel organic compounds, Optics Letters 20, p.435–437 (1995)

    Article  ADS  Google Scholar 

  69. {Sect. 5.3.3} R.I. Ghauharali, M. Muller, A.H. Buist, T.S. Sosnowski, T.B. Norris, J. Squier, G.J. Brakenhoff: Optical saturation measurements of fluorophores in solution with pulsed femtosecond excitation and two-dimensional CCD camera detection, Appl Opt 36, p.4320–4328 (1997)

    Article  ADS  Google Scholar 

  70. {Sect. 5.3.4} V.A. Zuikov, A.A. Kalachev, V.V. Samartsev, A.M. Shegeda: Two-color optical superradiance and other coherent effects in the resonant propagation of a laser pulse in a LaF3: Pr3+ crystal, Laser Phys 10, p.364–367 (2000)

    Google Scholar 

  71. {Sect. 5.3.4} P. Goy, J.M. Raimond, M. Gross, S. Haroche: Observation of Cavity-Enhanced Single-Atom Spontaneous Emission, Phys. Rev. Lett. 50, p.1903–1906 (1983)

    Article  ADS  Google Scholar 

  72. {Sect. 5.3.4} A. Szabo: Laser-Induced Fluorescence-Line Narrowing in Ruby, Phys. Rev. Lett. 25, p.924–926 (1970)

    Article  ADS  Google Scholar 

  73. {Sect. 5.3.5} W.E. Moerner (ed.): Persistent Spectral Hole-Burning: Science and Applications, Topics Curr. Phys, Vol. 44 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  74. {Sect. 5.3.5} M. Nogami, Y. Abe, K. Hirao, D.H. Cho: Room temperature persistent spectra hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process, Appl. Phys. Lett. 66, p.2952–2954 (1995)

    Article  ADS  Google Scholar 

  75. {Sect. 5.3.5} Y.-I. Pan, Y.-Y. Zhao, Y. Yin, L.-b. Chen, R.-s. Wang, F.-m. Li: The observation of photoproducts and multiple photon-gated spectral hole burning in a donor-acceptor and a donorl+donor2-acceptor system, Opt. Comm. 119, p.538–544 (1995)

    Article  Google Scholar 

  76. {Sect. 5.3.5} R.B. Altmann, I. Renge, L. Kador, D. Haarer: Dipole moment differences of nonpolar dyes in polymeric matrices: Stark effect and photochemical hole burning. I, J. Chem. Phys. 97, p.5316–5322 (1992)

    Article  ADS  Google Scholar 

  77. {Sect. 5.3.5} W.P. Ambrose, A.J. Sievers: Persistent infrared spectral hole burning of the fundamental stretching mode of SH-in alkali halides, J. Opt. Soc. Am. B 9, p.753–762 (1992)

    Article  ADS  Google Scholar 

  78. {Sect. 5.3.5} S. Arnold, J. Comunale: Room-temperature microparticle-based persistent hole-burning spectroscopy, J. Opt. Soc. Am. B 9, p.819–824 (1992)

    Article  ADS  Google Scholar 

  79. {Sect. 5.3.5} Th. Basché, W.P. Ambrose, W.E. Moerner: Optical spectra and kinetics of single impurity molecules in a polymer: spectral diffusion and persistent spectral hole burning, J. Opt. Soc. Am. B 9, p.829–836 (1992)

    Article  ADS  Google Scholar 

  80. {Sect. 5.3.5} R.L. Cone, P.C. Hansen, M.J.M. Leask: Eu3+ optically detected nuclear quadrupole resonance in stoichiometric europium vanadate, J. Opt. Soc. Am. B 9, p.779–783 (1992)

    Article  ADS  Google Scholar 

  81. {Sect. 5.3.5} R. Hirschmann, J. Friedrich: Hole burning of long-chain molecular aggregates: homogeneous line broadening, spectral-diffusion broadening, and pressure broadening, J. Opt. Soc. Am. B 9, p.811–815 (1992)

    Article  ADS  Google Scholar 

  82. {Sect. 5.3.5} H. Inoue, T. Iwamoto, A. Makishima, M. Ikemoto, K. Horie: Preperation and properties of sol-gel thin films with porphins, J. Opt. Soc. Am. B 9, p.816–818 (1992)

    Article  ADS  Google Scholar 

  83. {Sect. 5.3.5} L. Kümmert, H. Wolfrum, D. Haarer: Hole Burning with Chelate Complexes of Quinizarin in Alcohol Glasses, J. Phys. Chem. 96, p.10688–10693 (1992)

    Article  Google Scholar 

  84. {Sect. 5.3.5} S.P. Love, C.E. Mungan, A.J. Sievers: Persistant infrared spectral hole burning of Tb3+ in the glasslike mixed crystal Bal-x-yLaxTbyF2+ x+y, J. Opt. Soc. Am. B 9, p.794–799 (1992)

    Article  ADS  Google Scholar 

  85. {Sect. 5.3.5} C.E. Mungan, A.J. Sievers: Persistent infrared spectral hole burning of the fundamental stretching mode of SH-in alkali halides, J. Opt. Soc. Am. B 9, p.746–752 (1992)

    Article  ADS  Google Scholar 

  86. {Sect. 5.3.5} D. Redman, S. Brown, S.C. Rand: Origin of persistent hole burning of N-V centers in diamond, J. Opt. Soc. Am. B 9, p.768–774 (1992)

    ADS  Google Scholar 

  87. {Sect. 5.3.5} R. J. Reeves, R.M. Macfarlane: Persistent spectral hole burning induced by ion motion in DaF2:Pr3+:D-and SrF2:Pr3+:D-crystals, J. Opt. Soc. Am. B 9, p.763–767 (1992)

    ADS  Google Scholar 

  88. {Sect. 5.3.5} I. Renge: Relationship between electron-phonon coupling and intermolecular interaction parameters in dye-doped organic glasses, J. Opt. Soc. Am. B 9, p.719–723 (1992)

    ADS  Google Scholar 

  89. {Sect. 5.3.5} W. Richter, M. Lieberth, D. Haarer: Frequency dependence of spectral diffusion in hole-burning systems: resonant effects of infrared radiation, J. Opt. Soc. Am. B 9, p.715–718 (1992)

    ADS  Google Scholar 

  90. {Sect. 5.3.5} N.E. Rigby, N.B. Manson: Spectral hole burning in emerald, J. Opt. Soc. Am. B 9, p.775–778 (1992)

    ADS  Google Scholar 

  91. {Sect. 5.3.5} B. Sauter, Th. Basché, C. Bräuchle: Temperature-dependent spectral hole-burning study of dye-surface and mixed matrix-dye-surface systems, J. Opt. Soc. Am. B 9, p.804–810 (1992)

    ADS  Google Scholar 

  92. {Sect. 5.3.5} L. Shu, G.J. Small: Mechanism of nonphotochemical hole burning: Cresyl Violet in polyvinyl alcohol films, J. Opt. Soc. Am. B 9, p.724–732 (1992)

    Article  ADS  Google Scholar 

  93. {Sect. 5.3.5} L. Shu, G.J. Small: Dispersive kinetics of nonphotochemical hole burning and spontaneous hole filling: Cresyl Violet in polyvinyl films, J. Opt. Soc. Am. B 9, p.733–737 (1992)

    ADS  Google Scholar 

  94. {Sect. 5.3.5} L. Shu, G.J. Small: Laser-induced hole filling: Cresyl Violet in polyvinyl alcohol films, J. Opt. Soc. Am. B 9, p.738–745 (1992)

    ADS  Google Scholar 

  95. {Sect. 5.3.5} D. Wang, L. Hu, H. He, J. Rong, J. Xie, J. Zhang: Systems of organic photon-gated photochemical hole burning, J. Opt. Soc. Am. B 9, p.800–803 (1992)

    ADS  Google Scholar 

  96. {Sect. 5.3.5} L. Kador, S. Jahn, D. Haarer: Contributions of the electrostatic and the dispersion interaction to the solvent shift in a dye-polymer system, as investigated by hole-burning spectroscopy, Phys. Rev. B 41, p.12215–12228 (1990)

    ADS  Google Scholar 

  97. {Sect. 5.3.5} A. Renn, A. J. Meixner, U.P. Wild: II. Diffraction Properties of two Spectrally Adjacent Holograms, J. Chem. Phys. 91, p.2748–2755 (1990)

    Article  ADS  Google Scholar 

  98. {Sect. 5.3.5} U.P. Wild, A. Renn, C. De Caro, S. Bernet: Spectral hole burning and molecular computing, Appl. Opt. 29, p.4329–4331 (1990)

    Article  ADS  Google Scholar 

  99. {Sect. 5.3.5} P.C. Becker, H.L. Fragnito, J.Y Bigot, C.H. Brito Cruz, R.L. Fork, C.V. Shank: Femtosecond Photon Echos from Molecules in Solution, Phys. Rev. Lett. 63, p.505–507 (1989)

    Article  ADS  Google Scholar 

  100. {Sect. 5.3.5} C.H. BritoCruz, J.P. Gordon, P.C. Becker, R.L. Fork, C.V. Shank: Dynamics of Spectral Hole Burning, IEEE J. QE-24, p.261–266 (1988)

    Article  Google Scholar 

  101. {Sect. 5.3.5} M. Joffre, D. Hulin, A. Migus, A. Antonietti, C. Benoit à la Guillaume, N. Peyghambarian, M. Lindberg, S.W. Koch: Coherent effects in pump-probe spectroscopy of excitons, Opt. Lett. 13, p.276–278 (1988)

    Article  ADS  Google Scholar 

  102. {Sect. 5.3.5} B. Fluegel, N. Peyghambarian, G. Olbright, M. Lindberg, S.W. Koch, M. Joffre, D. Hulin, A. Migus, A. Antonietti: Femtosecond Studies of Coherent Transients in Semiconductors, Phys. Rev. Lett. 59, p.2588–2591 (1987)

    Article  ADS  Google Scholar 

  103. {Sect. 5.3.5} M. Maier: Persistant Spectral Holes in External Fields, Appl. Phys. B 41, p.73–90 (1986)

    ADS  Google Scholar 

  104. {Sect. 5.3.5} A.U. Jalmukhambetov, I.S. Osad’ko: Dependence of photochemical and photophysical hole burning on laser intensity, Chem. Phys. 77, p.247–255 (1983)

    Article  Google Scholar 

  105. {Sect. 5.3.5} J. Friedrich, D. Haarer: Transient features of optical bleaching as studies by photochemical hole burning and fluorescence line narrowing, J.Chem. Phys. 76, p.61–68 (1982)

    Article  ADS  Google Scholar 

  106. {Sect. 5.3.5} R.W. Olson, H.W.H. Lee, F.G. Patterson, M.D. Fayer: Non-photochemical hole burning and antihole production in the mixed molecular crystal pentacene in benzoic acid, J. Chem. Phys. 77, p.2283–2289 (1982)

    Article  ADS  Google Scholar 

  107. {Sect. 5.3.5} H. de Vries, D.A. Wiersma: Photophysical and photochemical molecular hole burning theory, J. Chem. Phys. 72, p.1851–1863 (1980)

    Article  ADS  Google Scholar 

  108. {Sect. 5.3.5} J. Friedrich, D. Haarer: Phonon selective low temperature photochemistry in alcohol glasses, Chem. Phys. Lett. 74, p.503–506 (1980)

    Article  ADS  Google Scholar 

  109. {Sect. 5.3.5} R. M. Macfarlane, R. M. Shelby: Photochemical and Population Hole Burning in the Zero-Phonon Line of a Color Center F3+ in NaF, Phys. Rev. Lett. 42, p.788–791 (1979)

    Article  ADS  Google Scholar 

  110. {Sect. 5.3.5} J.M. Hayes, G.J. Small: Non-photochemical hole burning and impurity site relaxation processes in organic glasses, Chem. Phys. 27, p.151–157 (1978)

    Article  ADS  Google Scholar 

  111. {Sect. 5.3.5} C.L. Tang, H. Statz, G.A. DeMars, D.T. Wilson: Spectral Properties of a Single-Mode Ruby Laser: Evidence of Homogeneous Broadening of the Zero-Phonon Lines in Solids, Phys. Rev. 136, p.A1–A8 (1964)

    Article  ADS  Google Scholar 

  112. {Sect. 5.3.5} R.T. Brundage, W.M. Yen: Low-temperature homogeneous linewidths of Yb3+ in inorganic glasses, Phys. Rev. B 4, p.4436–4438 (1986)

    ADS  Google Scholar 

  113. {Sect. 5.3.5} A.I.M. Dicker, L.W. Johnson, S. Völker, J.H. van der Waals: Homogeneous linewidth and optical dephasing of the S1-S0 transition of magnesium porphin in an n-octane crystal: A study by transient and photochemical hole-burning, Chem. Phys. Lett. 100, p.8–14 (1983)

    Article  ADS  Google Scholar 

  114. {Sect. 5.3.5} L.A. Rebane, A.A. Gorokhovskii, J.V. Kikas: Low-Temperature Spectroscopy of Organic Molecules in Solids by Photochemical Hole Burning, Appl. Phys. B 29, p.235–250 (1982)

    ADS  Google Scholar 

  115. {Sect. 5.3.5} A.I.M. Dicker, J. Dobkowski, S. Völker: Optical dephasing of the S1-S0 transition of free-base porphin in an n-decane host studied by photochemical hole-burning: a case of slow exchange, Chem. Phys. Lett. 84, p.415–420 (1981)

    Article  ADS  Google Scholar 

  116. {Sect. 5.3.5} J.R. Morgan, M.A. El-Sayed: Temperature dependence of the homogeneous linewidth of the 5D0-7F0 transition of Eu3+ in amorphous hosts at high temperatures, Chem. Phys. Lett. 84, p.213–216 (1981)

    Article  ADS  Google Scholar 

  117. {Sect. 5.3.5} S. Völker, R.M. Macfarlane: Laser photochemistry and hole-burning of chlorin in crystalline n-alkanes at low temperatures, J. Chem. Phys. 73, p.4476–4482 (1980)

    Article  ADS  Google Scholar 

  118. {Sect. 5.3.5} J. Hegarty, W.M. Yen: Optical Homogeneous Linewidths of Pr+ in BeF2 and GeO2 Glasses, Phys. Rev. Lett. 43, p.1126–1130 (1979)

    Article  ADS  Google Scholar 

  119. {Sect. 5.3.5} R.M. Shelby, R.M. Macfarlane: Population hole-burning using a triplet reservoir: S1-S0 transition of zinc porphin in n-octane, Chem. Phys. Lett. 64, p.545–549 (1979)

    Article  ADS  Google Scholar 

  120. {Sect. 5.3.5} S. Voelker, R.M. Macfarlane: Photochemical hole-burning in vibronic bands of the S1-S0 transition of free-base porphin in an n-octane crystal, Chem. Phys. Lett. 61, p.421–425 (1979)

    Article  ADS  Google Scholar 

  121. {Sect. 5.3.5} S. Voelker, R.M. Macfarlane: Frequency shift and dephasing of the S1-S0 transition of free-base porphin in an n-octane crystal as a function of temperature, Chem. Phys. Lett. 53, p.8–13 (1979)

    Article  ADS  Google Scholar 

  122. {Sect. 5.3.5} P. Avouris, A. Campion, M.A. El-Sayed: Variations in homogeneous fluorescence linewidth and electron-phonon coupling within an inhomogeneous spectral profile, J. Chem. Phys. 67, p.3397–3398 (1977)

    Article  ADS  Google Scholar 

  123. {Sect. 5.3.5} A.A. Gorokhovski, L.A. Rebane: The Termperature Broadening of Purely Electronic Lines by the Hole Burning Technique, Opt. Comm. 20, p.144–146 (1977)

    Article  ADS  Google Scholar 

  124. {Sect. 5.3.5} A.P. Marchetti, M. Scozzafava, R.H. Young: Site selection, hole burning, and Stark effect on resorufin in poly (methyl methacrylate), Chem. Phys. Lett. 51, p.424–426 (1977)

    Article  ADS  Google Scholar 

  125. {Sect. 5.3.5} P.M. Selzer, D.L. Huber, D.S. Hamilton, W.M. Yen, M.J. Weber: Anomoulous Fluorescence Linewidth Behavior in Eu3+-Doped Silicate Glass, Phys. Rev. Lett. 36, p.813–816 (1976)

    Article  ADS  Google Scholar 

  126. {Sect. 5.3.5} A.P. Marchetti, W.C. McColgin, J.H. Eberly: Inhomogeneous Broadening and Excited-Vibrational-State Lifetimes in Low-Temperature Organic Mixed Crystals, Phys. Rev. Lett. 35, p.387–390 (1975)

    Article  ADS  Google Scholar 

  127. {Sect. 5.3.5} M. Ishikawa, Y. Maruyama: Femtosecond spectral hole-burning of crystal violet in methanol. New evidence for ground state conformers, Chem. Phys. Lett. 219, p.416–420 (1994)

    Article  ADS  Google Scholar 

  128. {Sect. 5.3.5} H.J. Bakker, P.C.M. Planken, L. Kuipers, A. Lagendijk: Ultrafast infrared saturation spectroscopy of chloroform, bromeform, and iodoform, J. Chem. Phys. 94, p. 1730–1739 (1991)

    Article  ADS  Google Scholar 

  129. {Sect. 5.3.5} D. Blanchard, D.A. Gilmore, T.L. Brack, H. Lemaire, D. Hughes, G.H. Atkinson: Picosecond time-resolved absorption and fluorescence in the bacteriorhodopsin photocycle: vibrationally-excited species, Chem. Phys. 154, p.155–170 (1991)

    Article  ADS  Google Scholar 

  130. {Sect. 5.3.5} T.L. Brack, G.H. Atkinson: Vibrationally Excited Retinal in the Bacteriorhodopsin Photocycle: Picosecond Time-Resolved Anti-Stokes Resonance Raman Scattering, J. Phys. Chem. 95, p.2351–2356 (1991)

    Article  Google Scholar 

  131. {Sect. 5.3.5} T. Elsaesser, W. Kaiser: Vibrational and vibronic relaxation of large polyatomic molecules in liquids, Annu. Rev. Phys. Chem. 42, p.83–107 (1991)

    Article  ADS  Google Scholar 

  132. {Sect. 5.3.5} H. Graener, G. Seifert, A. Laubereau: New Spectroscopy of Water Using Tunable Picosecond Pulses in the Infrared, Phys. Rev. Lett. 66, p.2092–2095 (1991)

    Article  ADS  Google Scholar 

  133. {Sect. 5.3.5} H.-J. Hübner, M. Wörner, W. Kaiser, A. Seilmeier: Subpicosecond vibrational relaxation of skeletal modes in polyatomic molecules, Chem. Phys. Lett. 182, p.315–320 (1991)

    Article  ADS  Google Scholar 

  134. {Sect. 5.3.5} A. Mokhtari, A. Chebira, J. Chesnoy: Subpicosecond fluorescence dynamics of dye molecules, J. Opt. Soc. Am. B 7, p.1551–1557 (1990)

    ADS  Google Scholar 

  135. {Sect. 5.3.5} U. Sukowski, A. Seilmeier, T. Elsaesser, S.F. Fischer: Picosecond energy transfer of vibrationally hot molecules in solution: Experimental studies and theoretical analysis, J. Chem. Phys. 93, p.4094–4101 (1990)

    Article  ADS  Google Scholar 

  136. {Sect. 5.3.5} G. Angel, R. Gagel, A. Laubereau: Femtosecond polarization spectroscopy of liquid dye solutions, Chem. Phys. 131, p.129–134 (1989)

    Article  ADS  Google Scholar 

  137. {Sect. 5.3.5} G. Angel, R. Gagel, A. Laubereau: Femtosecond relaxation dynamics in the electronic ground state of dye molecules studied by polarization-dependent amplification spectroscopy, Chem. Phys. Lett. 156, p.169–174 (1989)

    Article  ADS  Google Scholar 

  138. {Sect. 5.3.5} H. Graener, T.Q. Ye, A. Laubereau: Ultrafast vibrational predissociation of hydrogen bonds: Mode selective infrared photochemistry in liquids, J. Chem. Phys. 91, p.1043–1046 (1989)

    Article  ADS  Google Scholar 

  139. {Sect. 5.3.5} H. Graener, T.Q. Ye, A. Laubereau: Ultrafast dynamics of hydrogen bonds directly observed by time-resolved infrared spectroscopy, J. Chem. Phys. 90, p.3413–3416 (1989)

    Article  ADS  Google Scholar 

  140. {Sect. 5.3.5} F. Laermer, T. Elsaesser, W. Kaiser: Ultrashort vibronic and thermal relaxation of dye molecules after femtosecond ultraviolet excitation, Chem. Phys. Lett. 156, p.381–386 (1989)

    Article  ADS  Google Scholar 

  141. {Sect. 5.3.5} A. Mokhtari, J. Chesnoy, A. Laubereau: Femtosecond time-and frequency-resolved fluorescence spectroscopy of a dye molecule, Chem. Phys. Lett. 155, p.593–598 (1989)

    Article  ADS  Google Scholar 

  142. {Sect. 5.3.5} A. Mokhtari, L. Fini, J. Chesnoy: Ultrafast conformation equilibration in triphenyl methane dyes analyzed by time resolved induced photoabsorption, J. Chem. Phys. 87, p.3429–3435 (1987)

    Article  ADS  Google Scholar 

  143. {Sect. 5.3.5} M.J. Rosker, F.W. Wise, C.L. Tang: Femtosecond Relaxation Dynamics of Large Molecules, Phys. Rev. Lett. 57, p.321–324 (1986)

    Article  ADS  Google Scholar 

  144. {Sect. 5.3.6} J. Ehlert, H. Stiel, K. Teuchner: A numerical solver for rate euqations and photon transport equations in nonlinear laser spectroscopy, Comp. Phys. Commun. 124 p.330–339 (2000)

    Article  MATH  ADS  Google Scholar 

  145. {Sect. 5.3.6} Stiel, Teuschner, Leupold, Oberländer, Ehlert, Jahnke: Computer Aided Laser-Spectroscopic Characterization and Handling of Molecular Excited States, Intell. Instr. Comp. 9, p.79–88 (1991)

    Google Scholar 

  146. {Sect. 5.3.6} R. Menzel: Modelling Excited State Absorption (ESA) Measurements Including the Photophysical Hole Burning Effect with Rate Equations, Mol. Phys. 68, p.161–180 (1989)

    Article  ADS  Google Scholar 

  147. {Sect. 5.3.6} C.J. Bardeen, J.S. Cao, F.L.H. Brown, K.R. Wilson: Using time-dependent rate equations to describe chirped pulse excitation in condensed phases, Chem Phys Lett 302, p.405–410 (1999)

    Article  ADS  Google Scholar 

  148. {Sect. 5.3.8} Y.C. Shen, P. Hess: Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer, J Appl Phys 82, p.4758–4762 (1997)

    Article  ADS  Google Scholar 

  149. {Sect. 5.3.8} N. Tamai, T. Asahi, H. Masuhara: Intersystem crossing of benzophenone by femtosecond transient grating spectroscopy, Chem. Phys. Lett. 198, p.413–418 (1992)

    Article  ADS  Google Scholar 

  150. {Sect. 5.4.0} T.W. Hänsch, H. Walther: Laser spectroscopy and quantum optics, Rev. Mod. Phys. 71, p.242–252 (1999)

    Article  Google Scholar 

  151. {Sect. 5.4.0} L. Mandel: Quantum Effects in one-photon and two-photon interference, Rev. Mod. Phys. 71, p.274–282 (1999)

    Article  Google Scholar 

  152. {Sect. 5.4.0} A. Zeilinger: Experiment and the foundations of quantum physics, Rev. Mod. Phys. 71, p.288–296 (1999)

    Article  Google Scholar 

  153. {Sect. 5.4.0} J. Mlynek, W. Lange, H. Harde, H. Burggraf: High-resolution coherence spectroscopy using pulse trains, Phys. Rev. A24, p.1099–1102 (1989)

    ADS  Google Scholar 

  154. {Sect. 5.4.0} J. Mlynek, W. Lange: A simple method of observing coherent ground state transients, Opt. Comm. 30, p.337–340 (1979)

    Article  ADS  Google Scholar 

  155. {Sect. 5.4.0} J.C. Bergquist, S.A. Lee, J.L. Hall: Saturated Absorption with Spatially Separated Laser Fiels: Observation of Optical ”Ramsey” Fringes, Phys. Rev. Lett. 38, p.159–161 (1977)

    Article  ADS  Google Scholar 

  156. {Sect. 5.4.0} M.M. Salour, C. Cohen-Tannoudji: Observation of Ramsey”s Interference Fringes in the Profile of Doppler-Free Two-Photon Resonances, Phys. Rev. Lett. 38, p.757–760 (1977)

    Article  ADS  Google Scholar 

  157. {Sect. 5.4.0} R.G. Brewer, A.Z. Genack: Optical Coherent Transients by Laser Frequency Switching, Phys. Rev. Lett. 36, p.959–962 (1976)

    Article  ADS  Google Scholar 

  158. {Sect. 5.4.0} M.E. Kaminsky, R.T. Hawkins, F.V. Kovalski, A.L. Schawlow: Identification of Absorption Lines by Modulated Lower-Level Population: Spectrum of Na2, Phys. Rev. Lett. 36, p.671–673 (1976)

    Article  ADS  Google Scholar 

  159. {Sect. 5.4.0} A. Schenzle, R.G. Brewer: Optical coherent transients: Generalized two-level solutions, Phys. Rev. A 14, p. 1756–1765 (1976)

    ADS  Google Scholar 

  160. {Sect. 5.4.0} R. Teets, R. Feinberg, T.W. Hänsch, A.L. Schawlow: Simplification of Spectra by Polarization Labeling, Phys. Rev. Lett. 37, p.683–686 (1976)

    Article  ADS  Google Scholar 

  161. {Sect. 5.4.0} C. Wieman, T.W. Hänsch: Doppler-Eree Laser Polarization Spectroscopy, Phys. Rev. A 36, p.1170–1173 (1976)

    ADS  Google Scholar 

  162. {Sect. 5.4.0} F. Biraben, B. Cagnac, G. Grynberg: Paschen-Back Effect on the 3S-4D Two-Photon Transition in Sodium Vapor, Phys. Lett. 48 A, p.469–470 (1974)

    ADS  Google Scholar 

  163. {Sect. 5.4.0} R.G. Brewer, R.L. Shoemaker, S. Stenhom: Collision-Induced Optical Double Resonance, Phys. Rev. Lett. 33, p.63–66 (1974)

    Article  ADS  Google Scholar 

  164. {Sect. 5.4.0} W. P. Schleich, E. Mayr: Quantum Optics in Phase Space (John Wiley & Sons, Chichester, 1997)

    Google Scholar 

  165. {Sect. 5.4.1} R.M. Macfarlane, Y. Sun, P.B. Sellin, R.L. Cone: Optical decoherence in Er3+-doped silicate fiber: Evidence for coupled spin-elastic tunneling systems — art. no. 033602, Phys Rev Lett 9603, p.3602 (2006)

    Google Scholar 

  166. {Sect. 5.4.1} M.U. Staudt, S.R. HastingsSimon, M. Afzelius, D. Jaccard, W. Tittel, N. Gisin: Investigations of optical coherence properties in an erbium-doped silicate fiber for quantum state storage, Opt Commun 266, p.720–726 (2006)

    Article  ADS  Google Scholar 

  167. {Sect. 5.4.1} C.M. Liebig, W.M. Dennis: Optical dephasing in saturable-absorbing organic dye IR140, Appl Opt 45, p.2072–2076 (2006)

    Article  ADS  Google Scholar 

  168. {Sect. 5.4.1} K. Watanabe, N. Takagi, Y. Matsumoto: Direct time-domain observation of ultrafast dephasing in adsorbate-substrate vibration under the influence of a hot electron bath: Cs adatoms on Pt(111) — art. no. 057401, Phys Rev Lett 9205, p.7401 (2004)

    Google Scholar 

  169. {Sect. 5.4.1} J. Forstner, C. Weber, J. Danckwerts, A. Knorr: Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots — art. no. 127401, Phys Rev Lett 9112, p.7401 (2003)

    Google Scholar 

  170. {Sect. 5.4.1} J.R. Guest, T.H. Stievater, G. Chen, E.A. Tabak, B.G. Orr, D.G. Steel, D. Gammon, D.S. Katzer: Near-field coherent spectroscopy and microscopy of a quantum dot system, Science 293, p.2224–2227 (2001)

    Article  ADS  Google Scholar 

  171. {Sect. 5.4.1} C.H. Grossman, J.J. Schwendiman: Ultrashort dephasing-time measurements in Nile Blue polymer films, Optics Letters 23, p.624–626 (1998)

    Article  ADS  Google Scholar 

  172. {Sect. 5.4.1} K. Holliday, C. Wie, M. Croci, U.P. Wild: Spectral hole-burning measurements of optical dephasing between 2–300 K in Sm2+ doped substitutionally disordered microcrystals, J. Luminesc. 53, p.227–230 (1992)

    Article  Google Scholar 

  173. {Sect. 5.4.1} R. van den Berg, A. Visser, S. Völker: Optical dephasing in organic glasses between 0.3 and 20 K. A hole-burning study of resorufin and free-base porphin, Chem. Phys. Lett. 144, p.105–113 (1988)

    Article  ADS  Google Scholar 

  174. {Sect. 5.4.1} Y.J. Yan, S. Mukamel: Electronic dephasing, vibrational relaxation, and solvent friction in molecular nonlinear optical line shapes, J. Chem. Phys. 89, p.5160–5176 (1988)

    Article  ADS  Google Scholar 

  175. {Sect. 5.4.1} T. Hattori, T. Kobayashi: Femtosecond dephasing in a polydiacetylene film observed by degenerate four-wave mixing with an incoherent nanosecond laser, J. Luminesc. 38, p.326–328 (1987)

    Article  Google Scholar 

  176. {Sect. 5.4.1} M.N. Sapozhnikov: Dephasing, vibronic relaxation and homogeneous spectra of porphyrins in amorphous matrices by selective excitation of luminescence and hole burning, Chem. Phys. Lett. 136, p.192–198 (1987)

    Article  ADS  Google Scholar 

  177. {Sect. 5.4.1} S. Völker: Optical linewidth and dephasing of organic amorphous and semi-crystalline solids studied by hole burning, J. Luminesc. 36, p.251–262 (1987)

    Article  Google Scholar 

  178. {Sect. 5.4.1} M. Fujiwara, R. Kuroda: Measurement of ultrafast dephasing time of Cresyl Fast Violet in cellulose by photon echoes with incoherent light, J. Opt. Soc. Am. B 2, p.1634–1639 (1985)

    ADS  Google Scholar 

  179. {Sect. 5.4.1} A.M. Weiner, S. De Silvestri, E.P. Ippen: Three-pulse scattering for femtosecond dephasing studies: theory and experiment, J. Opt. Soc. Am. B. 2, p.654–662 (1985)

    ADS  Google Scholar 

  180. {Sect. 5.4.1} T.P. Carter, B.L. Fearey, J.M. Hayes, G.J. Small: Optical dephasing of cresyl violet in a polyvinyl alcohol polymer by non-photochemical hole burning, Chem. Phys. Lett. 102, p.272–276 (1983)

    Article  ADS  Google Scholar 

  181. {Sect. 5.4.1} J. Brickmann, P. Russegger: Dephasing in isolated one-dimensional quantum systems, Chem. Phys. 68, p.369–375 (1982)

    Article  Google Scholar 

  182. {Sect. 5.4.1} A.I.M. Dicker, J. Dobkowski, S. Völker: Optical dephasing of the S1-S0 transition of free-base porphin in an n-decane host studied by photochemical hole-burning: a case of slow exchange, Chem. Phys. Lett. 84, p.415–420 (1981)

    Article  ADS  Google Scholar 

  183. {Sect. 5.4.1} D. von der Linde, A. Laubereau, W, Kaiser: Molecular Vibrations in Liquids: Direct Measurement of the Molecular Dephasing Time; Determination of the Shape of Picosecond Light Pulses, Phys. Rev. Lett. 26, p.954–957 (1971)

    Article  ADS  Google Scholar 

  184. {Sect. 5.4.1} W. Langbein, J.M. Hvam, R. Zimmermann: Time-resolved speckle analysis: A new approach to coherence and dephasing of optical excitations in solids, Phys Rev Lett 82, p.1040–1043 (1999)

    Article  ADS  Google Scholar 

  185. {Sect. 5.4.1} O.V. Prezhdo, P.J. Rossky: Relationship between quantum decoherence times and solvation dynamics in condensed phase chemical systems, Phys Rev Lett 81, p.5294–5297 (1998)

    Article  ADS  Google Scholar 

  186. {Sect. 5.4.1} G. Stock, W. Domcke: Detection of ultrafast molecularexcited-state dynamics with time-and frequency-resolved pump-probe spectroscopy, Phys. Rev. A 45, p.3032–3040 (1992)

    ADS  Google Scholar 

  187. {Sect. 5.4.1} G. Cerullo, G. Lanzani, M. Muccini, C. Taliani, S. DeSilvestri: Real-time vibronic coupling dynamics in a prototypical conjugated oligomer, Phys Rev Lett 83, p.231–234 (1999)

    Article  ADS  Google Scholar 

  188. {Sect. 5.4.1} K. Furuya, E. Koto, T. Ogawa: Direct observation of IVR under white light excitation: Fluorescence spectra of p-difluorobenzene by controlled electron impact, Chem Phys Lett 253, p.87–91 (1996)

    Article  ADS  Google Scholar 

  189. {Sect. 5.4.1} T. Matsumoto, K. Ueda, M. Tomita: Femtosecond vibrational relaxation measurement of azulene using temporally incoherent light, Chem. Phys. Lett. 191, p. 627–632 (1992)

    Article  ADS  Google Scholar 

  190. {Sect. 5.4.1} K.-P. Müller, D. Haarer: Spectral Diffusion of Optical Transitions in Doped Polymer Glasses below 1 K, Phys. Rev. Lett. 66, p.2344–2347 (1991)

    Article  ADS  Google Scholar 

  191. {Sect. 5.4.1} Y.M. Engel, R.D. Levine: Vibration-vibration resonance conditions in intramolecular classical dynamics of triatomic and larger molecules, Chem. Phys. Lett. 164, p.270–278 (1989)

    Article  ADS  Google Scholar 

  192. {Sect. 5.4.1} A. Amirav: Rotational and vibrational energy effect on energyresolved emission of anthracene and 9-cyanoanthracene, Chem. Phys. 124, p.163–175 (1988)

    Article  ADS  Google Scholar 

  193. {Sect. 5.4.1} G.A. Bickel, D.R. Demmer, G.W. Leach, St.C. Wallace: Mode-and symmetry-specific, picosecond intramolecular vibrational redistribution in 1-methylindole, Chem. Phys. Lett. 145, p.423–428 (1988)

    Article  ADS  Google Scholar 

  194. {Sect. 5.4.1} R. Parson: Classical-quantum correspondence in vibrational energy relaxation of nonlinear systems, J. Chem. Phys. 89, p.262–271 (1988)

    Article  ADS  Google Scholar 

  195. {Sect. 5.4.1} B.J. Orr, I.W.M. Smith: Collision-Induced Vibrational Energy Transfer in Small Polyatomic Molecules, J. Phys. Chem. 91, p.6106–6119 (1987)

    Article  Google Scholar 

  196. {Sect. 5.4.1} A. Amirav, J. Jortner, S. Okajima, E.C. Lim: Manifestation of intramolecular vibrational energy redistribution on electronic relaxation in large molecules, Chem. Phys. Lett. 126, p.487–494 (1986)

    Article  ADS  Google Scholar 

  197. {Sect. 5.4.1} D.B. Moss, Ch.S. Parmenter: A Time-Resolved Fluorescence Observation of Intramolecular Vibrationally Redistribution within the Channel Three Region of S1 Benzene, J. Phys. Chem. 90, p.1011–1014 (1986)

    Article  Google Scholar 

  198. {Sect. 5.4.1} P.O.J. Scherer, A. Seilmeier, W. Kaiser: Ultrafast intra-and intermolecular energy transfer in solutions after selective infrared excitation, J. Chem. Phys. 83, p.3948–3957 (1985)

    Article  ADS  Google Scholar 

  199. {Sect. 5.4.1} A.M. Weiner, E.P. Ippen: Femtosecond excited state relaxation of dye molecules in solution, Chem. Phys. Lett. 114, p.456–460 (1985)

    Article  ADS  Google Scholar 

  200. {Sect. 5.4.1} Th. Kulp, R. Ruoff, G. Stewart, J.D. McDonald: Intramolecular vibrational relaxation in 1,4 dioxane, J. Chem. Phys. 80, p.5359–5364 (1984)

    Article  ADS  Google Scholar 

  201. {Sect. 5.4.1} G. Stewart, R. Ruoff, Th. Kulp, J.D. McDonald: Intramolecular vibrational relaxation in dimethyl ether, J. Chem. Phys. 80, p.5353–5358 (1984)

    Article  ADS  Google Scholar 

  202. {Sect. 5.4.1} A.J. Taylor, D.J. Erskine, C.L. Tang: Femtosecond vibrational relaxation of large organic molecules, Chem. Phys. Lett. 103, p.430–435 (1984)

    Article  ADS  Google Scholar 

  203. {Sect. 5.4.1} H. Graener, H.R. Telle, A. Lauberau: Applications of Picosecond and Sub-Picosecond Spectroscopy, p.393–401 (1983)

    Google Scholar 

  204. {Sect. 5.4.1} W. Zinth, C. Kolmeder, B. Benna, A. Irgens-Defregger, S.F. Fischer, W. Kaiser: Fast and exceptionally slow vibrational energy transfer in acetylene and phenylacetylene in solution, J. Chem. Phys. 78, p.3916–3921 (1983)

    Article  ADS  Google Scholar 

  205. {Sect. 5.4.1} D. Reiser, A. Laubereau: Vibrational Relaxation of Dye Molecules Investigated by Ultrafast Induced Dichroism, Appl. Phys. B 27, p.115–122 (1982)

    ADS  Google Scholar 

  206. {Sect. 5.4.1} A. Zewail, W. Lambert, P. Felker, J. Perry, W. Warren: Laser Probing of Vibrational Energy Redistribution and Dephasing, J. Phys. Chem. 86, p.1184–1192 (1982)

    Article  Google Scholar 

  207. {Sect. 5.4.1} G. Venzl, S.F. Fischer: The effect of localized modes on radiationless electronic transitions. II. Dependence on impurity concentration, J. Chem. Phys. 74, p.1887–1892 (1981)

    Article  ADS  Google Scholar 

  208. {Sect. 5.4.1} W. Zinth, H.-J. Polland, A. Lauberau, W. Kaiser: New Results on Ultrafast Coherent Excitation of Molecular Viibrations in Liquids, Appl. Phys. B 26, p.77–88 (1981)

    Article  ADS  Google Scholar 

  209. {Sect. 5.4.1} A. Laubereau, W. Kaiser: Vibrational dynamics of liquids and solids investigated by picosecond light pulses, Rev. Mod. Phys. 50, p.607–685 (1978)

    Article  ADS  Google Scholar 

  210. {Sect. 5.4.1} C.V. Shank, E.P. Ippen, O. Teschke: Sub-picosecond relaxation of large organic molecules in solution, Chem. Phys. Lett. 45, p.291–294 (1977)

    Article  ADS  Google Scholar 

  211. {Sect. 5.4.1} A. Laubereau: Picosecond phase relaxation of the fundamental vibrational mode of liquid nitrogen, Chem. Phys. Lett. 27, p.600–602 (1974)

    Article  ADS  Google Scholar 

  212. {Sect. 5.4.1} D.W. Vahey: Effects of spectral cross relaxation and collisional sephasing on the absorption of light by organic-dye solutions, Phys. Rev. A 10, p.1578–1590 (1974)

    Article  ADS  Google Scholar 

  213. {Sect. 5.4.1} A. Laubereau, L. Kirschner, W. Kaiser: Direct observation in intermolecular transfer of vibrational energy in liquids, Opt. Comm. 9, p.182–185 (1973)

    Article  ADS  Google Scholar 

  214. {Sect. 5.4.2} Z.G. Yi, D.A. Micha, J. Sund: Density matrix theory and calculations of nonlinear yields of CO photodesorbed from Cu (001) by light pulses, J Chem Phys 110, p. 10562–10575 (1999)

    Article  ADS  Google Scholar 

  215. {Sect. 5.4.2} P. Yeh: Two-Wave Mixing in Nonlinear Media, IEEE J. QE-25, p.484–519 (1989)

    Article  Google Scholar 

  216. {Sect. 5.4.2} P. Yeh: Exact solution of a nonlinear model of two-wave mixing in Kerr media, J. Opt. Soc. Am. B 3, p.747–750 (1986)

    Article  ADS  Google Scholar 

  217. {Sect. 5.4.3} A. Schulzgen, R. Binder, M.E. Donovan, T. Lindberg, K. Wundke, H.M. Gibbs, G. Khitrova, N. Peyghambarian: Direct observation of excitonic Rabi oscillations in semiconductors, Phys Rev Lett 82, p.2346–2349 (1999)

    Article  ADS  Google Scholar 

  218. {Sect. 5.4.3} O. Kittelmann, J. Ringling, A. Nazarkin, G. Korn, I.V. Hertel: Direct observation of coherent medium response under the condition of two-photon excitation of krypton by femtosecond UV-laser pulses, Phys Rev Lett 76, p.2682–2685 (1996)

    Article  ADS  Google Scholar 

  219. {Sect. 5.4.3} R.M. Williams, J.M. Papanikolas, J. Rathje, S.R. Leone: Quantum-state-resolved 2-level femtosecond rotational coherence spectroscopy: Determination of rotational constants at medium and high J in Li-2, a simple diatomic system, Chem Phys Lett 261, p.405–413 (1996)

    Article  ADS  Google Scholar 

  220. {Sect. 5.4.3} C. Wunderlich, E. Kobler, H. Figger, T.W. Hansch: Light-induced molecular potentials, Phys Rev Lett 78, p.2333–2336 (1997)

    Article  ADS  Google Scholar 

  221. {Sect. 5.4.3} Y. R. Shen: Principles of Nonlinear Optics, chapter 13 (John Wiley & Sons, Chichester, 1984)

    Google Scholar 

  222. {Sect. 5.4.3} R.F. Loring, Y.J. Yan, S. Mukamel: Time-resolved fluorescence and hole-burning line shapes of solvated molecules: Longitudinal dielectric relaxation and vibrational dynamics, J. Chem. Phys. 87, p.5840–5857 (1987)

    Article  ADS  Google Scholar 

  223. {Sect. 5.4.3} M.N. Sapozhnikov: Hole burning in the spectra of molecules in amorphous solids: The hole shape and ist dependence on laser frequency, power, irradiation time and temperature, Chem. Phys. Lett. 135, p.398–406 (1987)

    Article  ADS  Google Scholar 

  224. {Sect. 5.4.3} B. Jackson, R. Silbey: Theoretical description of photochemical hole burning in soft glasses, Chem. Phys. Lett. 99, p.331–334 (1983)

    Article  ADS  Google Scholar 

  225. {Sect. 5.4.3} J. Klafter, R. Silbey: A conjecture of nonphotochemical hole burning in organic glasses, J. Chem. Phys. 75, p.3973–3976 (1981)

    Article  ADS  Google Scholar 

  226. {Sect. 5.4.3} A. v. Jena, H.E. Lessing: Coherent Coupling Effects in Picosecond Absorption Experiments, Appl. Phys. 19, p.131–144 (1979)

    Article  ADS  Google Scholar 

  227. {Sect. 5.4.3} D.H. Schirrmeister, V. May: Strong-field approach to ultrafast pump-probe spectra: Dye molecules in solution, Chem Phys 220, p.1–13 (1997)

    Article  Google Scholar 

  228. {Sect. 5.4.4} T.K. Yee, T.K. Gustafson: Diagrammatic analysis of the density operator for nonlinear optical calculations: Pulsed and cw responses, Phys. Rev. A 18, p.1597–1617 (1978)

    Article  ADS  Google Scholar 

  229. {Sect. 5.4.4} Y. R. Shen: Principles of Nonlinear Optics, chapter 2 (John Wiley & Sons, Chichester, 1984)

    Google Scholar 

  230. {Sect. 5.4.4} P. Salieres, B. Carre, L. LeDeroff, F. Grasbon, G.G. Paulus, H. Walther, R. Kopold, W. Becker, D.B. Milosevic, A. Sanpera, M. Lewenstein: Feynman’s path-integral approach for intense-laser-atom interactions, Science 292, p.902–905 (2001)

    Article  ADS  Google Scholar 

  231. {Sect. 5.4.5} H.C. Torrey: Transient Nutations in Nuclear Magnetic Resonance, Phys. Rev. 76, p. 1059–1068 (1949)

    Article  MATH  ADS  Google Scholar 

  232. {Sect. 5.4.5} R.G. DeVoe, R.G. Brewer: Experimental Test of the Optical Bloch Equations for Solids, Phys. Rev. Lett. 50, p.1269–1272 (1983)

    Article  ADS  Google Scholar 

  233. {Sect. 5.4.5} R.G. Brewer, R.L. Shoemaker: Optical Free Induction Decay, Phys. Rev. A 6, p.2001–2007 (1972)

    Article  ADS  Google Scholar 

  234. {Sect. 5.4.5} R.G. Brewer, R.L. Shoemaker: Photo Echo and Optical Nutation in Molecules, Phys. Rev. Lett. 27, p.631–634 (1971)

    Article  ADS  Google Scholar 

  235. {Sect. 5.4.5} G.B. Hocker, C.L. Tang: Observation of the Optical Transient Nutation Effect, Phys. Rev. Lett. 21, p.591–594 (1968)

    Article  ADS  Google Scholar 

  236. {Sect. 5.4.5} C.L. Tang, H. Statz: Optical Analog of the Transient Nutation Effect, Appl. Phys. Lett. fO, p.145–147 (1967)

    Article  ADS  Google Scholar 

  237. {Sect. 5.4.5} I. I. Rabi: Space Quantization in a Gyrating Magnetic Field, Phys. Rev. 51, p.652–654 (1937)

    Article  MATH  ADS  Google Scholar 

  238. {Sect. 5.4.6} T. Aoki, G. Mohs, M. KuwataGonokami, A.A. Yamaguchi: Influence of exciton-exciton interaction on quantum beats, Phys Rev Lett 82, p.3108–3111 (1999)

    Article  ADS  Google Scholar 

  239. {Sect. 5.4.6} M. Joschko, M. Woerner, E. Elsaesser, E. Binder, R. Hey, H. Kostial, K. Ploog: Heavy-light hole quantum beats in the band-to-band continuum of GaAs observed in 20 femtosecond pump-probe experiments, Phys Rev Lett 78, p.737–740 (1997)

    Article  ADS  Google Scholar 

  240. {Sect. 5.4.6} S. Savikhin, D.R. Buck, W.S. Struve: Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels, Chem Phys 223, p.303–312 (1997)

    Article  Google Scholar 

  241. {Sect. 5.4.6} C. Leichtle, I.S. Averbukh, W.P. Schleich: Generic structure of multilevel quantum beats, Phys Rev Lett 77, p.3999–4002 (1996)

    Article  ADS  Google Scholar 

  242. {Sect. 5.4.6} H. Bitto: Dynamics of S1 acetone studied with single rotor vibronic level resolution, Chem. Phys. 186, p.105–118 (1994)

    Article  ADS  Google Scholar 

  243. {Sect. 5.4.6} H. Bitto, J.R. Huber: Molecular quantum beat spectroscopy, Opt. Commun. 80, p.184–198 (1990)

    Article  ADS  Google Scholar 

  244. {Sect. 5.4.6} A. Mokhtari, A. Chebira, J. Chesnoy: Subpicosecond fluorescence dynamics of dye molecules, J. Opt. Soc. Am. B 7, p.1551–1557 (1990)

    Article  ADS  Google Scholar 

  245. {Sect. 5.4.6} A.E.A. Mokhtari, J. Chesnoy: Terahertz Fluorescence Quantum Beats in a Dye Solution, IEEE J. QE-25, p.2528–2531 (1989)

    Article  Google Scholar 

  246. {Sect. 5.4.6} S. Saikan, T. Nakabayashi, Y. Kanematsu, A. Imaoka: Observation of vibronic quantum beat in dye-doped polymers using femtosecond accumulated photon echo, J. Chem. Phys. 89, p.4609–4612 (1988)

    Article  ADS  Google Scholar 

  247. {Sect. 5.4.6} P. Schmidt, H. Bitto, J.R. Huber: Excited state dipole moments in a polyatomic molecule determined by Stark quantum beat spectroscopy, J. Chem. Phys. 88, p.696–704 (1988)

    Article  ADS  Google Scholar 

  248. {Sect. 5.4.6} R. Leonhardt, W. Holzapfel, W. Zinth, W. Kaiser: Terahertz quantum beats in molecular liquids, Chem. Phys. Lett. 133, p.373–377 (1987)

    Article  ADS  Google Scholar 

  249. {Sect. 5.4.6} N. Ochi, H. Watanabe, S. Tsuchiya: Rotationally Resolved Laser-Induced Fluorescence and Zeeman Quantum Beat Spectroscopy of the V1B2 State of Jet-Cooled CS2, Chem. Phys. 113, p.271–285 (1987)

    Article  Google Scholar 

  250. {Sect. 5.4.6} M. Dubs, J. Mühlbach, H. Bitto, P. Schmidt, J.R. Huber: Hyper-fine quantum beats and Zeeman spectroscopy in the polyatomic molecule propynal HCxCCHO, J. Chem. Phys. 83, p.3755–3767 (1985)

    Article  ADS  Google Scholar 

  251. {Sect. 5.4.6} W. Lange, J. Mlynek: Quantum Beats in Transmission by Time-Resolved Polarization Spectroscopy, Phys. Rev. Lett. 40, p. 1373–1375 (1978)

    Article  ADS  Google Scholar 

  252. {Sect. 5.4.6} A. Laubereau, G. Wochner, W. Kaiser: Collective Beating of Molecular Vibrations in Liquids on the Picosecond Time Scale, Opt. Comm. 17, p.91–94 (1976)

    Article  ADS  Google Scholar 

  253. {Sect. 5.4.6} S. Haroche, J.A. Paisner, A.L. Schawlow: Hyperfine Quantum Beats Observed in Cs Vapor under Pulsed Dye Laser Excitation, Phys. Rev. Lett. 30, p.948–951 (1973)

    Article  ADS  Google Scholar 

  254. {Sect. 5.4.6} H.R. Schlossberg, A. Javan: Saturation Behavior of a Doppler-Broadened Transition Involving Levels with Closely Spaced Structure, Phys. Rev. 150, p.267–284 (1966)

    Article  ADS  Google Scholar 

  255. {Sect. 5.4.7} W.A. Hugel, M.F. Heinrich, M. Wegener, Q.T. Vu, L. Banyai, H. Haug: Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics, Phys Rev Lett 83, p.3313–3316 (1999)

    Article  ADS  Google Scholar 

  256. {Sect. 5.4.7} L. Menager, I. Lorgere, J.L. LeGouet, R.K. Mohan, S. Kroll: Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes, Optics Letters 24, p.927–929 (1999)

    Article  ADS  Google Scholar 

  257. {Sect. 5.4.7} R.K. Mohan, U. Elman, M.Z. Tian, S. Kroll: Regeneration of photon echoes with amplified photon echoes, Optics Letters 24, p.37–39 (1999)

    Article  ADS  Google Scholar 

  258. {Sect. 5.4.7} P. Hamm, M. Lim, R.M. Hochstrasser: Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes, Phys Rev Lett 81, p.5326–5329 (1998)

    Article  ADS  Google Scholar 

  259. {Sect. 5.4.7} B.Z. Luo, U. Elman, S. Kroll, R. Paschotta, A. Tropper: Amplification of photon echo signals by use of a fiber amplifier, Optics Letters 23, p.442–444 (1998)

    Article  ADS  Google Scholar 

  260. {Sect. 5.4.7} T. Wang, C. Greiner, T.W. Mossberg: Experimental observation of photon echoes and power-efficiency analysis in a cavity environment, Optics Letters 23, p.1736–1738 (1998)

    Article  ADS  Google Scholar 

  261. {Sect. 5.4.7} J.P. Likforman, M. Joffre, V. Thierrymieg: Measurement of photon echoes by use of femtosecond Fourier-transform spectral interferometry, Optics Letters 22, p.1104–1106 (1997)

    Article  ADS  Google Scholar 

  262. {Sect. 5.4.7} R.M. Macfarlane, T.L. Harris, Y. Sun, R.L. Cone, R.W. Equall: Measurement of photon echoes in Er:Y2SiO5 at 1.5 mu m with a diode laser and an amplifier, Optics Letters 22, p.871–873 (1997)

    Article  ADS  Google Scholar 

  263. {Sect. 5.4.7} C.W. Rella, A. Kwok, K. Rector, J.R. Hill, H.A. Schwettman, D.D. Dlott, M.D. Fayer: Vibrational echo studies of protein dynamics, Phys Rev Lett 77, p.1648–1651 (1996)

    Article  ADS  Google Scholar 

  264. {Sect. 5.4.7} S.B. Altner, S. Bernet, A. Renn, E.S. Maniloff, F.R. Graf, U.P. Wild: Spectral hole burning and holography VI: Photon echoes from cw spectrally programmed holograms in a Pr3+:Y2SiO5 crystal, Opt. Comm. 120, p.103–111 (1995)

    Article  ADS  Google Scholar 

  265. {Sect. 5.4.7} P.C. Becker, H.L. Fragnito, J.Y Bigot, C.H. Brito Cruz, R.L. Fork, C.V. Shank: Femtosecond Photon Echos from Molecules in Solution, Phys. Rev. Lett. 63, p.505–507 (1989)

    Article  ADS  Google Scholar 

  266. {Sect. 5.4.7} S. Saikan, T. Nakabayashi, Y. Kanematsu, N. Tato: Fouriertransform spectroscopy in dye-doped polymers using the femtosecond accumulated photon echo, Phys. Rev. B 38, p.7777–7781 (1988)

    Article  ADS  Google Scholar 

  267. {Sect. 5.4.7} M. Berg, C.A. Walsh, L.R. Narasimhan, M.D. Fayer: Picosecond photon echo and optical hole burning studies of chromophores in organic glasses, J. Luminesc. 38, p.9–14 (1987)

    Article  Google Scholar 

  268. {Sect. 5.4.7} S. Saikan, A. Fujiwara, T Kushida, Y. Kato: High-Frequency Heterodyned Detection of Picosecond Accumulated Photon Echoes, Jpn. J. Appl. Phys. 26, p.L941–L943 (1987)

    Article  ADS  Google Scholar 

  269. {Sect. 5.4.7} S. Saikan, H. Miyamoto, Y. Tosaki, A. Fujiwara: Opticaldensity effect in heterodyne-detected accumulated photon echo, Phys. Rev. B 36, p.5074–5077 (1987)

    Article  ADS  Google Scholar 

  270. {Sect. 5.4.7} C.A. Walsh, M. Berg, L.R. Narasimhan, M.D. Fayer: A picosecond photon echo study of a chromophore in an organic glass: Temperature dependence and comparision to nonphotochemical hole burning, J. Chem. Phys. 86, p.77–87 (1987)

    Article  ADS  Google Scholar 

  271. {Sect. 5.4.7} L.W. Molenkamp, D.A. Wiersma: Optical dephasing in organic amorphous systems. A photon echo and hole-burning study of pentacene in polymethylmethacrylate, J. Chem. Phys. 83, p.1–9 (1985)

    Article  ADS  Google Scholar 

  272. {Sect. 5.4.7} S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka: Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass, Phys. Rev. A 29, p.2286–2289 (1984)

    Article  ADS  Google Scholar 

  273. {Sect. 5.4.7} R. Beach, S.R. Hartmann: Incoherent Photon Echoes, Phys. Rev. Lett. 53, p.663–666 (1984)

    Article  ADS  Google Scholar 

  274. {Sect. 5.4.7} H. Nakatsuka, M. Tomita, M. Fujiwara, S. Asaka: Subpicosecond Photon Echoes by Using Nanosecond Laser Pulses, Opt. Comm. 52, p.150–152 (1984)

    Article  ADS  Google Scholar 

  275. {Sect. 5.4.7} R.G. DeVoe, R.G. Brewer: Experimental Test of the Optical Bloch Equations for Solids, Phys. Rev. Lett. 50, p.1269–1272 (1983)

    Article  ADS  Google Scholar 

  276. {Sect. 5.4.7} H.W.H. Lee, F.G. Patterson, R.W. Olson, D.A. Wiersma, M.D. Fayer: Temperature-dependent dephasing of delocalized dimer states of pentacene in p-terphanyl: Picosecond photon echo experiments, Chem. Phys. Lett. 90, p.172–177 (1982)

    Article  ADS  Google Scholar 

  277. {Sect. 5.4.7} K. Duppen, L.W. Molenkamp, J.B.W. Morsink, D.A. Wiersma, H.P. Trommsdorff: Optical dephasing in a glass-like system: A photon echo study of pentacene in benzoic acid, Chem. Phys. Lett. 84, p.421–424 (1981)

    Article  ADS  Google Scholar 

  278. {Sect. 5.4.7} M. Fujita, H. Nakatsuka, H. Nakanishi, M. Matsuoka: Backward Echo in Two-Level Systems, Phys. Rev. Lett. 42, p.974–977 (1979)

    Article  ADS  Google Scholar 

  279. {Sect. 5.4.7} T.M. Mossberg, R. Kachru, S.R. Hartmann, A.M. Flusberg: Echoes in gaseous media. A generalized theory of rephasing phenomena, Phys. Rev. A 20, p.1976–1996 (1979)

    Article  ADS  Google Scholar 

  280. {Sect. 5.4.7} S.C. Rand, A. Wokaun, R.G. DeVoe, R.G. Brewer: Magic-Angle Line Narrowing in Optical Spectroscopy, Phys. Rev. Lett. 43, p.1868–1871 (1979)

    Article  ADS  Google Scholar 

  281. {Sect. 5.4.7} S.R. Hartmann: H-3-Photon, Spin, and Raman Echoes, IEEE J. QE-4, p.802–807 (1968)

    Article  Google Scholar 

  282. {Sect. 5.4.7} C.K.N. Patel, R.E. Slusher: Photon echoes in gases, Phys. Rev. Lett. 20, p.1087–1089 (1968)

    Article  ADS  Google Scholar 

  283. {Sect. 5.4.7} I.D. Abella, N.A. Kurnit, S.R. Hartmann: Photon Echoes, Phys. Rev. 141, p.391–406 (1966)

    Article  ADS  Google Scholar 

  284. {Sect. 5.4.7} N.A. Kurnit, I.D. Abella, S.R. Hartmann: Observation of a Photon Echo, Phys. Rev. Lett. 13, p.567–568 (1964)

    Article  ADS  Google Scholar 

  285. {Sect. 5.4.7} E.L. Hahn: Spin echoes, Phys. Rev. 80, p.580–594 (1950)

    Article  MATH  ADS  Google Scholar 

  286. {Sect. 5.4.7} S.R. Hartmann: Photon echoes. In Lasers and Light, Readings from Scientific American (Freeman, San Francisco 1969) S. 303

    Google Scholar 

  287. {Sect. 5.4.7} S.M. Zakharov, E.A. Manykin: Simultaneous optical image processing by photon echoes, Int. J. Optoelectron. 9, p.333–338 (1994)

    Google Scholar 

  288. {Sect. 5.4.7} R. Yano, N. Uesugi: Demonstration of partial erasing of picosecond temporal optical data by use of accumulated photon echoes, Optics Letters 24, p.1753–1755 (1999)

    Article  ADS  Google Scholar 

  289. {Sect. 5.4.8} H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. vanHulst, T.F. Krauss, L. Kuipers: Real-space observation of ultraslow light in photonic crystal waveguides — art. no. 073903, Phys Rev Lett 9407, p.3903 (2005)

    Google Scholar 

  290. {Sect. 5.4.8} M. Blaauboer, B.A. Malomed, G. Kurizki: Spatiotemporally localized multidimensional solitons in self-induced transparency media, Phys Rev Lett 84, p.1906–1909 (2000)

    Article  ADS  Google Scholar 

  291. {Sect. 5.4.8} S.E. Harris, L.V. Hau: Nonlinear optics at low light levels, Phys Rev Lett 82, p.4611–4614 (1999)

    Article  ADS  Google Scholar 

  292. {Sect. 5.4.8} M. Muller, V.P. Kaiosha, J. Herrmann: 2 pi-pulse laser using an intracavity quantum-well absorber, Opt Commun 150, p.147–152 (1998)

    Article  ADS  Google Scholar 

  293. {Sect. 5.4.8} P.R. Berman, J.M. Levy, R.G. Brewer: Coherent optical transient study of molecular collisions: Theory and observations, Phys. Rev. A 11, p.1668–1688 (1975)

    Article  ADS  Google Scholar 

  294. {Sect. 5.4.8} M.M.T. Loy: Observation of Population Inversion by Optical Adiabatic Rapid Passage, Phys. Rev. Lett. 32, p.814–817 (1974)

    Article  ADS  Google Scholar 

  295. {Sect. 5.4.8} M.D. Crisp: Adiabatic-Following Approximation, Phys. Rev. A 8, p.2128–2135 (1973)

    Article  ADS  Google Scholar 

  296. {Sect. 5.4.8} D. Grischkowsky, E. Courtens, J.A. Armstrong: Observation of Self-Steepening of Optical Pulses with Possible Shock Formation, Phys. Rev. Lett. 31, p.422–425 (1973)

    Article  ADS  Google Scholar 

  297. {Sect. 5.4.8} D. Grischkowsky: Adiabatic Following and Slow Optical Pulse Propagation in Rubidium Vapor, Phys. Rev. A 7, p.2096–2102 (1973)

    Article  ADS  Google Scholar 

  298. {Sect. 5.4.8} R.E. Slusher, H.M. Gibbs: Self-Induced Transparenca in Atomic Rubidium, Phys. Rev. A 5, p.1634–1659 (1972)

    Article  ADS  Google Scholar 

  299. {Sect. 5.4.8} D. Grischkowsky: Self-Focusing of Light by Potassium Vapor, Phys. Rev. Lett. 24, p.866–869 (1970)

    Article  ADS  Google Scholar 

  300. {Sect. 5.4.8} S.L. McCall, E.L. Hahn: Self-Induced Transparency, Phys. Rev. 183, p.457–485 (1969)

    Article  ADS  Google Scholar 

  301. {Sect. 5.4.8} E.B. Treacy: Adiabatic Inversion with Light Pulses, Phys. Lett. 27A, p.421–422 (1968)

    ADS  Google Scholar 

  302. {Sect. 5.4.8} S.L. McCall, E.L. Hahn: Self-Induced Transparency by Pulsed Coherent Light, Phys. Rev. Lett. 18, p.908–911 (1967)

    Article  ADS  Google Scholar 

  303. {Sect. 5.4.8} Y. R. Shen: Principles of Nonlinear Optics, chapter 21 (John Wiley & Sons, Chichester, 1984)

    Google Scholar 

  304. {Sect. 5.4.9} S. Ozcelik, I. Ozcelik, D.L. Akins: Superradiant lasing from J-aggregated molecules adsorbed onto colloidal silver, Appl Phys Lett 73, p.1949–1951 (1998)

    Article  ADS  Google Scholar 

  305. {Sect. 5.4.9} F. Haake, H. King, G. Schröder, J. Haus, R. Glauber, F. Hopf: Macroscopic Quantum Fluctuations in Superfluorescence, Phys. Rev. Lett. 42, p.1740–1743 (1979)

    Article  ADS  Google Scholar 

  306. {Sect. 5.4.9} D. Polder, M.F.H. Schuurmans, Q.H.F. Vrehen: Superfluorescence: Quantum-mechanical derivation of Maxwell-Bloch description with fluctuating field source, Phys. Rev. A 19, p.1192–1203 (1979)

    Article  ADS  Google Scholar 

  307. {Sect. 5.4.9} Q.H.F. Vrehen, M.F.H. Schuurmans: Direct Measurement of the Effective Initial Tipping Angle in Superfluorescence, Phys. Rev. Lett. 42, p.224–227 (1979)

    Article  ADS  Google Scholar 

  308. {Sect. 5.4.9} R. Glauber, F. Haake: The Initiation of Superfluorescence, Phys. Rev. Lett. 68A, p.29–32 (1978)

    ADS  Google Scholar 

  309. {Sect. 5.4.9} H.M. Gibbs, Q.H.F. Vrehen, H.M.J. Hikspoors: Single-Pulse Superfluorescence in Cesium, Phys. Rev. Lett. 39, p.547–549 (1977)

    Article  ADS  Google Scholar 

  310. {Sect. 5.4.9} J.C. MacGillivray, M.S. Field: Theory of superradiance in an extended, optically thick medium, Phys. Rev. A 14, p.1169–1189 (1976)

    Article  ADS  Google Scholar 

  311. {Sect. 5.4.9} R. Bonifacio, L.A. Lugiato: Cooperative radiation processes in two-level systems: Superfluorescence, Phys. Rev. A 11, p.1507–1521 (1975)

    Article  ADS  Google Scholar 

  312. {Sect. 5.4.9} N. Bloembergen, R.V. Pound: Radiation Damping in Magnetic Resonance Experiments, Phys. Rev. 95, p.8–12 (1954)

    Article  ADS  Google Scholar 

  313. {Sect. 5.4.10} E.S. Fry, X. Li, D. Nikonov, G.G. Padmabandu, M.O. Scully, A.V. Smith, F.K. Tittel, C. Wang, S.R. Wilkinson, S.Y. Zhu: Atomic Coherence Effects within the Sodium D1 Line: Lasing without Inversion via Population Trapping, Phys. Rev. Lett. 70, p.3235–3246 (1993)

    Article  ADS  Google Scholar 

  314. {Sect. 5.4.10} M.O. Scully: Enhancement of the Index of Refraction via Quantum Coherence, Phys. Rev. Lett. 67, p.1855–1858 (1991)

    Article  ADS  Google Scholar 

  315. {Sect. 5.4.10} S.E. Harris: Lasers without Inversion: Interferencee of Lifetime-Broadened Resonaces, Phys. Rev. Lett. 62, p.1033–1036 (1989)

    Article  ADS  Google Scholar 

  316. {Sect. 5.4.10} Y. Rostovtsev, S. Trendafilov, A. Artemiev, K. Kapale, G. Kurizki, M.O. Scully: Numerical experiments on free-electron lasers without inversion — art. no. 214802, Phys Rev Lett 9021, p.4802 (2003)

    Google Scholar 

  317. {Sect. 5.4.10} P.S. Bhatia, G.R. Welch, M.O. Scully: Laser amplification without population inversion on the D-1 line of the Cs atom with semiconductor diode lasers, J Opt Soc Am B Opt Physics 18, p.1587–1596 (2001)

    Article  ADS  Google Scholar 

  318. {Sect. 5.4.10} X.M. Hu, J.S. Peng: Squeezed cascade lasers without and with inversion, Opt Commun 154, p.203–216 (1998)

    Article  ADS  Google Scholar 

  319. {Sect. 5.4.10} J.T. Manassah, B. Gross: Amplification without inversion in an extended optically dense open Lambda-system, Opt Commun 148, p.404–416 (1998)

    Article  ADS  Google Scholar 

  320. {Sect. 5.4.10} B. Sherman, G. Kurizki, D.E. Nikonov, M.O. Scully: Universal classical mechanism of free-electron lasing without inversion, Phys Rev Lett 75, p.4602–4605 (1995)

    Article  ADS  Google Scholar 

  321. {Sect. 5.4.10} J. Mompart, R. Corbalan, R. Vilaseca: Lasing without inversion in the V-type three-level system under the two-photon resonance condition, Opt Commun 147, p.299–304 (1998)

    Article  ADS  Google Scholar 

  322. {Sect. 5.4.10} C. Fort, F.S. Cataliotti, T.W. Hansch, M. Inguscio, M. Prevedelli: Gain without inversion on the cesium D-1 line, Opt Commun 139, p.31–34 (1997)

    Article  ADS  Google Scholar 

  323. {Sect. 5.4.10} S.Q. Gong, S.D. Du, Z.Z. Xu: Nonlinear theory of lasing with or without inversion in a simple three-level atomic system, Opt Commun 130, p.249–254 (1996)

    Article  ADS  Google Scholar 

  324. {Sect. 5.4.10} J.B. Khurgin, E. Rosencher: Practical aspects of lasing without inversion in various media, IEEE J QE-32, p.1882–1896 (1996)

    Article  Google Scholar 

  325. {Sect. 5.4.10} D.E. Nikonov, B. Sherman, G. Kurizki, M.O. Scully: Lasing without inversion in Cherenkov free-electron lasers, Opt Commun 123, p.363–371 (1996)

    Article  ADS  Google Scholar 

  326. {Sect. 5.4.10} G.G. Padmabandu, G.R. Welch, I.N. Shubin, E.S. Fry, D.E. Nikonov, M.D. Lukin, M.O. Scully: Laser oscillation without population inversion in a sodium atomic beam, Phys Rev Lett 76, p.2053–2056 (1996)

    Article  ADS  Google Scholar 

  327. {Sect. 5.4.10} A.S. Zibrov, M.D. Lukin, D.E. Nikonov, L. Hollberg, M.O. Scully, V.L. Velichansky, H.G. Robinson: Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb, Phys Rev Lett 75, p.1499–1502 (1995)

    Article  ADS  Google Scholar 

  328. {Sect. 5.4.10} A. Nottelmann, C. Peters, W. Lange: Inversionless Amplification of Picosecond Pulses due to Zeeman Coherence, Phys. Rev. Lett. 70, p.1783–1786 (1993)

    Article  ADS  Google Scholar 

  329. {Sect. 5.4.10} M.O. Scully, S.-Y. Zhu: Degenerate Quantum-Beat Laser: Lasing without Inversion and Inversion without Lasing, Phys. Rev. Lett. 62, p.2813–2816 (1989)

    Article  ADS  Google Scholar 

  330. {Sect. 5.4.10} M. Kauert, P.C. Stoller, M. Frenz, J. Ricka: Absolute measurement of molecular two-photon absorption crosssections using a fluorescence saturation technique, Opt Express 14, p.8434–8447 (2006)

    Article  ADS  Google Scholar 

  331. {Sect. 5.4.10} G.B. Xu, X.G. Xu, Z. Zhao, D.W. Hu, Z.S. Shao, H.J. Liu, Y.P. Tian: Two-photon excitation properties of a class of novel organic dye chloride, Opt Commun 260, p.292–297 (2006)

    Article  ADS  Google Scholar 

  332. {Sect. 5.4.10} K.R. Allakhverdiev, T. Baykara, S. Joosten, E. Gunay, A.A. Kaya, A. Kulibekov, A. Seilmeier, E.Y. Salaev: Anisotropy of two-photon absorption in gallium selenide at 1064 nm, Opt Commun 261, p.60–64 (2006)

    Article  ADS  Google Scholar 

  333. {Sect. 5.4.10} S.L. Zhou, X. Zhao, X.Q. Sun, X.F. Cheng: Theoretical studies of one-and two-photon absorption properties for symmetric molecules based on bis(Stilbene)diethylene, J Theor Comput Chem 5, p.535–542 (2006)

    Article  Google Scholar 

  334. {Sect. 5.4.10} P.C. Ray, Z. Sainudeen: Very large infrared two-photon absorption cross section of asymmetric zinc porphyrin aggregates: Role of intermolecular interaction and donor-acceptor strengths, J Phys Chem A 110, p.12342–12347 (2006)

    Article  Google Scholar 

  335. {Sect. 5.4.10} X.B. Zhang, J.K. Feng, A.M. Ren, C.C. Sun: Theoretical study of two-photon absorption properties of a series of ferrocene-based chromophores, J Phys Chem A 110, p.12222–12230 (2006)

    Article  Google Scholar 

  336. {Sect. 5.4.10} D.S. Correa, S.L. Oliveira, L. Misoguti, S.C. Zilio, R.F. Aroca, C.J.L. Constantino, C.R. Mendonca: Investigation of the two-photon absorption cross-section in perylene tetracarboxylic derivatives: Nonlinear spectra and molecular structure, J Phys Chem A 110, p.6433–6438 (2006)

    Article  Google Scholar 

  337. {Sect. 5.4.10} L. Antonov, K. Kamada, D. Nedeltcheva, K. Ohta, F.S. Kamounah: Gradual change of one-and two-photon absorption properties in solution-Protonation of 4-N,N-dimethylamino-4′-aminoazobenzene, J Photochem Photobiol A Chem 181, p.274–282 (2006)

    Article  Google Scholar 

  338. {Sect. 5.4.10} M.J. Paterson, J. Kongsted, O. Christiansen, K.V. Mikkelsen, C.B. Nielsen: Two-photon absorption cross sections: An investigation of solvent effects. Theoretical studies on formaldehyde and water — art. no. 184501, J Chem Phys 125, p.84501 (2006)

    Article  ADS  Google Scholar 

  339. {Sect. 5.4.10} M. Drobizhev, N.S. Makarov, Y. Stepanenko, A. Rebane: Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution — art. no. 224701, J Chem Phys 124, p.24701 (2006)

    Article  Google Scholar 

  340. {Sect. 5.4.10} C.B. Nielsen, S. Rettrup, S.P.A. Sauer: Two-photon absorption cross sections: An investigation of the accuracy of calculated absolute and relative values — art. no. 114108, J Chem Phys 124, p.14108 (2006)

    Article  Google Scholar 

  341. {Sect. 5.4.10} R. Fortrie, H. Chermette: Two-photon absorption strength: A new tool for the quantification of two-photon absorption — art. no. 204104, J Chem Phys 124, p.4104 (2006)

    Article  ADS  Google Scholar 

  342. {Sect. 5.4.10} J.L. Humphrey, D. Kuciauskas: Charge transfer enhances two-photon absorption in transition metal porphyrins, J Am Chem Soc 128, p.3902–3903 (2006)

    Article  Google Scholar 

  343. {Sect. 5.4.10} J. Fu, O.V. Przhonska, L.A. Padilha, D.J. Hagan, E.W. VanStryland, K.D. Belfield, M.V. Bondar, Y.L. Slominsky, A.D. Kachkovski: Two-photon anisotropy: Analytical description and molecular modeling for symmetrical and asymmetrical organic dyes, Chem Phys 321, p.257–268 (2006)

    Article  ADS  Google Scholar 

  344. {Sect. 5.4.10} S.L. Oliveira, D.S. Correa, L. DeBoni, L. Misoguti, S.C. Zilio, C.R. Mendonca: Two-photon absorption cross-section spectrum of a pi-conjugated polymer obtained using the white-light continuum Z-scan technique — art. no. 021911, Appl Phys Lett 88, p.21911 (2006)

    Article  Google Scholar 

  345. {Sect. 5.4.10} A. Selle, C. Kappel, M.A. Bader, G. Marowsky, K. Winkler, U. Alexiev: Picosecond-pulse-induced two-photon fluorescence enhancement in biological material by application of grating waveguide structures, Optics Letters 30, p.1683–1685 (2005)

    Article  ADS  Google Scholar 

  346. {Sect. 5.4.10} P.C. Ray, J. Leszczynski: Two-photon absorption and first nonlinear optical properties of ionic octupolar molecules: Structure-function relationships and solvent effects, J. Phys. Chem. A 109, p.6689–6696 (2005)

    Article  Google Scholar 

  347. {Sect. 5.4.10} G.S. He, Q.D. Zheng, P.N. Prasad, R. Helgeson, F. Wudl: Nonlinear optical stabilization of 1064-nm laser pulses with a two-photon absorbing liquid-dye salt system, Appl Opt 44, p.3560–3564 (2005)

    Article  ADS  Google Scholar 

  348. {Sect. 5.4.10} S. Soria, T. Katchalski, E. Teitelbaum, A.A. Friesem, G. Marowsky: Enhanced two-photon fluorescence excitation by resonant grating waveguide structures, Optics Letters 29, p.1989–1991 (2004)

    Article  ADS  Google Scholar 

  349. {Sect. 5.4.10} J. Balaji, C.S. Reddy, S.K. Kaushalya, S. Maiti: Microfluorometric detection of catecholamines with multiphotonexcited fluorescence, Appl Opt 43, p.2412–2417 (2004)

    Article  ADS  Google Scholar 

  350. {Sect. 5.4.10} G. McConnell, G.L. Smith, J.M. Girkin, A.M. Gurney, A.I. Ferguson: Two-photon microscopy of fura-2-loaded cardiac myocytes with an allsolid-state tunable and visible femtosecond laser source, Optics Letters 28, p.1742–1744 (2003)

    Article  ADS  Google Scholar 

  351. {Sect. 5.4.10} C. Gorling, U. Leinhos, K. Mann: Self-trapped exciton luminescence and repetition rate dependence of two-photon absorption in CaF2 at 193 nm, Opt Commun 216, p.369–378 (2003)

    Article  ADS  Google Scholar 

  352. {Sect. 5.4.10} A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, A. Rebane: Enhancement of two-photon absorption in tetrapyrrolic compounds, J Opt Soc Am B Opt Physics 20, p.321–332 (2003)

    Article  ADS  Google Scholar 

  353. {Sect. 5.4.10} Z. Liu, Q. Fang, D. Wang, D. Cao, G. Xue, W. Yu, H. Lei: Trivalent boron as an acceptor in donor-?-acceptor-type commpounds for single-and two-photon excited fluorescence, Chem. Eur. J. 9, p.5074–5084 (2003)

    Article  Google Scholar 

  354. {Sect. 5.4.10} J.H. Si, J.R. Qiu, J.Y. Guo, G.D. Qian, M.Q. Wang, K. Hirao: Photoinduced birefringence of azodye-doped materials by a femtosecond laser, Appl Opt 42, p.7170–7173 (2003)

    Article  ADS  Google Scholar 

  355. {Sect. 5.4.10} P.F. Tian, W.S. Warren: Ultrafast measurement of two-photon absorption by loss modulation, Optics Letters 27, p.1634–1636 (2002)

    Article  ADS  Google Scholar 

  356. {Sect. 5.4.10} J.Y. Ye, M.T. Myaing, T.B. Norris, T. Thomas, J. Baker: Biosensing based on two-photon fluorescence measurements through optical fibers, Optics Letters 27, p.1412–1414 (2002)

    Article  ADS  Google Scholar 

  357. {Sect. 5.4.10} R. Schroeder, B. Ullrich: Absorption and subsequent emission saturation of two-photon excited materials: theory and experiment, Optics Letters 27, p.1285–1287 (2002)

    Article  ADS  Google Scholar 

  358. {Sect. 5.4.10} P. Markowicz, C. Friend, Y.Z. Shen, J. Swiatkiewicz, P.N. Prasad, O. Toader, S. John, R.W. Boyd: Enhancement of two-photon emission in photonic crystals, Optics Letters 27, p.351–353 (2002)

    Article  ADS  Google Scholar 

  359. {Sect. 5.4.10} G.S. He, T.C. Lin, P.N. Prasad: New technique for degenerate two-photon absorption spectral measurements using femtosecond continuum generation, Opt Express 10, p.566–574 (2002)

    ADS  Google Scholar 

  360. {Sect. 5.4.10} L. Mees, J.P. Wolf, G. Gouesbet, G. Grehan: Two-photon absorption and fluorescence in a spherical micro-cavity illuminated by using two laser pulses: numerical simulations, Opt Commun 208, p.371–375 (2002)

    Article  ADS  Google Scholar 

  361. {Sect. 5.4.10} G.Y. Zhou, D. Wang, X.M. Wang, X.G. Xu, Z.S. Shao, M.H. Jiang: Properties of picosecond two-photon-absorption induced amplified spontaneous emission and cavity lasing of a new organic dye PSPS, Opt Commun 202, p.221–225 (2002)

    Article  ADS  Google Scholar 

  362. {Sect. 5.4.10} J. Palero, W. Garcia, C. Saloma: Two-color (Two-photon) excitation fluorescence with two confocal beams and a Raman shifter, Opt Commun 211, p.65–71 (2002)

    Article  ADS  Google Scholar 

  363. {Sect. 5.4.10} F.-J. Kao, Y.-M. Wang, J.-C. Chen, P.-C. Cheng, R.-W. Chen, B.-L. Lin: Micro-spectroscopy of chloroplasts in protoplasts from Arabidopsis thaliana under single-and multi-photon excitations, Journal of Luminescence 98, p.107–114 (2002)

    Article  ADS  Google Scholar 

  364. {Sect. 5.4.10} G.Y. Zhou, D. Wang, X.Q. Yu, Y. Ren, X.G. Xu, X.F. Cheng, Z.S. Shao, M.H. Jiang: Two-photon-absorption and upconverted superradiance properties of organic dye HEASPS-doped linear homogeneous polymer at several wavelengths, J Opt Soc Am B Opt Physics 19, p.1141–1144 (2002)

    Article  ADS  Google Scholar 

  365. {Sect. 5.4.10} G.Y. Zhou, D. Wang, S.J. Yang, X.G. Xu, Y. Ren, Z.S. Shao, M.H. Jiang, Y.P. Tian, F.Y. Hao, S.L. Li, P.F. Shi: Studies on the two-photon pumped upconverted fluorescence and superradiance of a new organic dye material in solutions, Appl Opt 41, p.6371–6374 (2002)

    Article  ADS  Google Scholar 

  366. {Sect. 5.4.10} T. Alexander, CD. Tran: Simultaneous measurement of one-and two-photon excited fluorescence from a single sample: a detection method for oligonucleotides, Appl Opt 41, p.2285–2291 (2002)

    Article  ADS  Google Scholar 

  367. {Sect. 5.4.10} C. Wang, X.M. Wang, Z.S. Shao, X. Zhao, G.Y. Zhou, D. Wang, Q. Fang: Studies on the lasing properties of a new two-photon absorbing material HEASPI, Opt Commun 192, p.315–322 (2001)

    Article  ADS  Google Scholar 

  368. {Sect. 5.4.10} D.A. Oulianov, I.V. Tomov, A.S. Dvornikov, P.M. Rentzepis: Observations on the measurement of two-photon absorption crosssection, Opt Commun 191, p.235–243 (2001)

    Article  ADS  Google Scholar 

  369. {Sect. 5.4.10} C. Wang, X.M. Wang, Z.S. Shao, X.A. Zhao, G.Y. Zhou, D. Wang, Q. Fang, M.H. Jiang: Optical properties of a new two-photon absorbing chromophore, Appl Opt 40, p.2475–2478 (2001)

    Article  ADS  Google Scholar 

  370. {Sect. 5.5} P. Kaatz, D.P. Shelton: Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering, J Opt Soc Am B Opt Physics 16, p.998–1006 (1999)

    Article  ADS  Google Scholar 

  371. {Sect. 5.5} E.J. Sanchez, L. Novotny, X.S. Xie: Near-field fluorescence microscopy based on two-photon excitation with metal tips, Phys Rev Lett 82, p.4014–4017 (1999)

    Article  ADS  Google Scholar 

  372. {Sect. 5.5} M. Sonnleitner, G.J. Schutz, T. Schmidt: Imaging individual molecules by two-photon excitation, Chem Phys Lett 300, p.221–226 (1999)

    Article  ADS  Google Scholar 

  373. {Sect. 5.5} E.R. Thoen, E.M. Koontz, M. Joschko, P. Langlois, T.R. Schibli, F.X. Kartner, E.P. Ippen, L.A. Kolodziejski: Two-photon absorption in semiconductor saturable absorber mirrors, Appl Phys Lett 74, p.3927–3929 (1999)

    Article  ADS  Google Scholar 

  374. {Sect. 5.5} K.R. Allakhverdiev: Two-photon absorption of femtosecond laser pulses in GaS crystals, Opt Commun 149, p.64–66 (1998)

    Article  ADS  Google Scholar 

  375. {Sect. 5.5} C.V. Bindhu, S.S. Harilal, A. Kurian, V.P.N. Nampoori, C.P.G. Vallabhan: Two and three photon absorption in rhodamine 6G methanol solutions using pulsed thermal lens technique, J Nonlinear Opt Physics Mat 7, p.531–538 (1998)

    Article  ADS  Google Scholar 

  376. {Sect. 5.5} M.A. Bopp, Y. Jia, G. Haran, E.A. Morlino, R.M. Hochstrasser: Single-molecule spectroscopy with 27 fs pulses: Time-resolved experiments and direct imaging of orientational distributions, Appl Phys Lett 73, p.7–9 (1998)

    Article  ADS  Google Scholar 

  377. {Sect. 5.5} G.S. He, R. Signorini, P.N. Prasad: Two-photon-pumped frequency-upconverted blue losing in Coumarin dye solution, Appl Opt 37, p.5720–5726 (1998)

    Article  ADS  Google Scholar 

  378. {Sect. 5.5} M. Reeves, M. Musculus, P. Farrell: Confocal, two-photon laserinduced fluorescence technique for the detection of nitric oxide, Appl Opt 37, p.6627–6635 (1998)

    Article  ADS  Google Scholar 

  379. {Sect. 5.5} J. Swiatkiewicz, P.N. Prasad, B.A. Reinhardt: Probing twophoton excitation dynamics using ultrafast laser pulses, Opt Commun 157, p.135–138 (1998)

    Article  ADS  Google Scholar 

  380. {Sect. 5.5} K.L. Vodopyanov, S.B. Mirov, V.G. Voevoolin, P.G. Schunemann: Two-photon absorption in GaSe and CdGeAs2, Opt Commun 155, p.47–50 (1998)

    Article  ADS  Google Scholar 

  381. {Sect. 5.5} Z.P. Chen, D.L. Kaplan, K. Yang, J. Kumar, K.A. Marx, S.K. Tripathy: Two-photon-induced fluorescence from the phycoerythrin protein, Appl Opt 36, p.1655–1659 (1997)

    Article  ADS  Google Scholar 

  382. {Sect. 5.5} C. Dorrer, F. Nez, B. deBeauvoir, L. Julien, F. Biraben: Accurate measurement of the 2 (3)S (1)-3 (3)D (1) two-photon transition frequency in helium: New determination of the 2 (3)S (1) Lamb shift, Phys Rev Lett 78, p.3658–3661 (1997)

    Article  ADS  Google Scholar 

  383. {Sect. 5.5} J.E. Ehrlich, X.L. Wu, L.Y.S. Lee, Z.Y. Hu, H. Rockel, S.R. Marder, J.W. Perry: Two-photon absorption and broadband optical limiting with bis-donor stilbenes, Optics Letters 22, p.1843–1845 (1997)

    Article  ADS  Google Scholar 

  384. {Sect. 5.5} Y.C. Guo, Q.Z. Wang, N. Zhadin, F. Liu, S. Demos, D. Calistru, A. Tirksliunas, A. Katz, Y. Budansky, P.P. Ho, et al.: Two-photon excitation of fluorescence from chicken tissue, Appl Opt 36, p.968–970 (1997)

    Article  ADS  Google Scholar 

  385. {Sect. 5.5} E.J. Larson, L.A. Friesen, C.K. Johnson: An ultrafast onephoton and two-photon transient absorption study of the solvent-dependent photophysics in all-trans retinal, Chem Phys Lett 265, p.161–168 (1997)

    Article  ADS  Google Scholar 

  386. {Sect. 5.5} T. Munakata, T. Sakashita, M. Tsukakoshi, J. Nakamura: Fine structure of the two-photon photoemission from benzene adsorbed on Cu (111), Chem Phys Lett 271, p.377–380 (1997)

    Article  ADS  Google Scholar 

  387. {Sect. 5.5} G. Robertson, D. Armstrong, M.J.P. Dymott, A.I. Ferguson, G.L. Hogg: Two-photon fluorescence microscopy with a diode-pumped Cr: LiSAF laser, Appl Opt 36, p.2481–2483 (1997)

    Article  ADS  Google Scholar 

  388. {Sect. 5.5} T. Plakhotnik, D. Walser, A. Renn, U.P. Wild: Light induced single molecule frequency shift, Phys Rev Lett 77, p.5365–5368 (1996)

    Article  ADS  Google Scholar 

  389. {Sect. 5.5} P.S. Weitzman, U. Osterberg: Two-photon absorption and photoconductivity in photosensitive glasses, J Appl Phys 79, p.8648–8655 (1996)

    Article  ADS  Google Scholar 

  390. {Sect. 5.5} R. De Salvo, A.A. Said, D.J. Hagan, E.W. Van Stryland, M. Sheik-Bahae: Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids, IEEE J. QE-32, p.1324–1333 (1996)

    Article  Google Scholar 

  391. {Sect. 5.5} T. Plakhotnik, D. Walser, M. Pirotta, A. Renn, U.P. Wild: Nonlinear spectroscopy on a single quantum system: Two-photon absorption of a single molecule, Science 271, p.1703–1705 (1996)

    Article  ADS  Google Scholar 

  392. {Sect. 5.5} C. Xu, J. Guild, W.W. Webb, W. Denk: Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation, Optics Letters 20, p.2372–2374 (1995)

    Article  ADS  Google Scholar 

  393. {Sect. 5.5} K. Danzmann, K. Grützmacher, B. Wende: Doppler-free two-photon polarization spectroscopy measurement of the Stark-broadened profile of the hydrogen L alpha line in a dense plasma, Phys. Rev. Lett. 57, p.2151–2153 (1986)

    Article  ADS  Google Scholar 

  394. {Sect. 5.5} B.M. Pierce, R.R. Birge: The Effects of Laser Pulsewidth and Molecular Lifetime on the Experimental Determination of One-Photon and Two-Photon Excitation Spectra, IEEE J. QE-19, p.826–833 (1983)

    Article  Google Scholar 

  395. {Sect. 5.5} S. Chu, A.P. Mills, Jr.: Excitation of the Positronium 1 3S1-23S1 Two-Photon Transition, Phys. Rev. Lett. 48, p.1333–1337 (1982)

    Article  ADS  Google Scholar 

  396. {Sect. 5.5} G.I. Bekov, E.P. Vidolova-Angelova, L.N. Ivanov, V.S. Letokhov, V.I. Mishin: Double-Excited Narrow Autoionization States of Ytterbium Atom, Opt. Comm. 35, p.194–198 (1980)

    Article  ADS  Google Scholar 

  397. {Sect. 5.5} B.P. Stoicheff, E. Weinberger: Frequency Shifts, Line Broadenings, and Phase-Interference Effects in Rb**+Rb Collisions, Measured by Doppler-Free Two-Photon Spectroscopy, Phys. Rev. Lett. 44, p.733–736 (1980)

    Article  ADS  Google Scholar 

  398. {Sect. 5.5} B.P. Stoicheff, E. Weinberger: Doppler-free two-photon absorption spectrum of rubidium, Can. J. Phys. 57, p.2143–2154 (1979)

    Google Scholar 

  399. {Sect. 5.5} K.C. Harvey, B.P. Stoicheff: Fine Structure of the n2D Series in Rubidium near the Ionization Limit, Phys. Rev. Lett. 38, p.537–540 (1977)

    Article  ADS  Google Scholar 

  400. {Sect. 5.5} R. Teets, J. Eckstein, T.W. Hänsch: Coherent Two-Photon Excitation by Multiple Light Pulses, Phys. Rev. Lett. 38, p.760–764 (1977)

    Article  ADS  Google Scholar 

  401. {Sect. 5.5} P.F. Liao, G.C. Bjorklund: Polarization Rotation Induced by Resonant Two-Photon Dispersion, Phys. Rev. Lett. 36, p.584–587 (1976)

    Article  ADS  Google Scholar 

  402. {Sect. 5.5} M.G. Littman, M.L. Zimmerman, T.W. Ducas, R.R. Freeman, D. Kleppner: Stucture of Sodium Rydberg States in Weak to Strong Electric Fields, Phys. Rev. Lett. 36, p.788–791 (1976)

    Article  ADS  Google Scholar 

  403. {Sect. 5.5} T.W. Hänsch, K.C. Harvey, G. Meisel, A.L. Schawlow: Two-Photon Spectroscopy of Na 3s-4d Without Doppler Broadening Using a CW Dye Laser, Opt. Comm. 11, p.50–53 (1974)

    Article  ADS  Google Scholar 

  404. {Sect. 5.5} M.D. Levenson, N. Bloembergen: Observation of Two-Photon Absorption without Doppler Broadening on the 3S-5S Transition in Sodium Vapor, Phys. Rev. Lett. 32, p.645–648 (1974)

    Article  ADS  Google Scholar 

  405. {Sect. 5.5} W.M. McClain: Excited State Symmetry Assignment Through Polarized Two-Photon Absorption Studies of Fluids, J. Chem. Phys. 55, p.2789–2796 (1971)

    Article  ADS  Google Scholar 

  406. {Sect. 5.5} W.H. Glenn: Theory of the Two-Photon Absorption-Fluorescence Method of Pulswidth Measurement, IEEE J. QE-6, p.510–515 (1970)

    Article  Google Scholar 

  407. {Sect. 5.5} T.R. Bader, A. Gold: Polarization Dependence of Two-Photon Absorption in Solids, Phys. Rev. 171, p.997–1003 (1968)

    Article  ADS  Google Scholar 

  408. {Sect. 5.5} M.W. Hamilton, D.S. Elliott: Second order interference in two photon absorption, J. Mod. Opt. 43, p.1765–1771 (1965)

    Article  ADS  Google Scholar 

  409. {Sect. 5.5} W. Kaiser, C.G.B. Garrett: Two-Photon Excitation in CaF2: Eu2+, Phys. Rev. Lett. 7, p.229–231 (1961)

    Article  ADS  Google Scholar 

  410. {Sect. 5.5} M. Göppert-Mayer: Über Elementarakte mit zwei Quanten-sprüngen, Ann. Phys.9, p.273–294 (1931)

    Article  MATH  Google Scholar 

  411. {Sect. 5.5} M. Bellini, A. Bartoli, T.W. Hänsch: Two-photon Fourier spectroscopy with femtosecond light pulses, Optics Letters 22, p.540–542 (1997)

    Article  ADS  Google Scholar 

  412. {Sect. 5.5} V. Blanchet, C. Nicole, M.A. Bouchene, B. Girard: Temporal coherent control in two-photon transitions: From optical interferences to quantum interferences, Phys Rev Lett 78, p.2716–2719 (1997)

    Article  ADS  Google Scholar 

  413. {Sect. 5.5} H.-B. Fei, M. Jost, S. Popescu, B.E.A. Saleh, M.C. Teich: Entanglement-Induced Two-Photon Transparency, Phys. Rev. Lett. 78, p.1679–1682 (1997)

    Article  ADS  Google Scholar 

  414. {Sect. 5.5} W. Rudolph, M. Sheikbahae, A. Bernstein, L.F. Lester: Femtosecond autocorrelation measurements based on two-photon photoconductivity in ZnSe, Optics Letters 22, p.313–315 (1997)

    Article  ADS  Google Scholar 

  415. {Sect. 5.5} S.A. Slattery, D.N. Nikogosyan: Long-period fiber grating inscription under high-intensity 352 nm femtosecond irradiation: Three-photon absorption and energy deposition in cladding, Opt Commun 255, p.81–90 (2005)

    Article  ADS  Google Scholar 

  416. {Sect. 5.5} P.P. Markowicz, G.S. He, P.N. Prasad: Direct four-photon excitation of amplified spontaneous emission in a nonlinear organic chromophore, Optics Letters 30, p.1369–1371 (2005)

    Article  ADS  Google Scholar 

  417. {Sect. 5.5} A.K. Dharmadhikari, B. Roy, S. Roy, J.A. Dharmadhikari, A. Mishra, G.R. Kumar: Higher-order optical nonlinearities in 4′-dimethylamino-N-methyl-4-stilbazolium tosylate, Opt Commun 235, p.195–200 (2004)

    Article  ADS  Google Scholar 

  418. {Sect. 5.5} H. Wabnitz, L. Bittner, A.R.B. deCastro, R. Dohrmann, P. Gurtler, T. Laarmann, W. Laasch, J. Schulz, A. Swiderski, K. vonHaeften, T. Moller, B. Faatz, A. Fateev, J. Feldhaus, C. Gerth, U. Hahn, E. Saldin, E. Schneidmiller, K. Sytchev, K. Tiedtke, R. Treusch, M. Yurkov: Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser, Nature 420, p.482–485 (2002)

    Article  ADS  Google Scholar 

  419. {Sect. 5.5} J. Pe?ina, E.A. Saleh, B. M.C. Teich: Multiphoton absorption cross section and virtual-state spectroscopy for the entangled n-photon state, Physical Review A 57, p.3972–3986 (1998)

    Article  ADS  Google Scholar 

  420. {Sect. 5.5} P. Langlois, E.P. Ippen: Measurement of pulse asymmetry by three-photon-absorption autocorrelation in a GaAsP photodiode, Optics Letters 24, p.1868–1870 (1999)

    Article  ADS  Google Scholar 

  421. {Sect. 5.5} C. Majumder, O.D. Jayakumar, R.K. Vatsa, S.K. Kulshreshtha, J.P. Mittal: Multiphoton ionisation of acetone at 355 nm: a time-of-flight mass spectrometry study, Chem Phys Lett 304, p.51–59 (1999)

    Article  ADS  Google Scholar 

  422. {Sect. 5.5} A. Volkmer, K. Wynne, D.J.S. Birch: Near-infrared excitation of alkane ultra-violet fluorescence, Chem Phys Lett 299, p.395–402 (1999)

    Article  ADS  Google Scholar 

  423. {Sect. 5.5} M.A. Baig, M. Yaseen, A. Nadeem, R. Ali, S.A. Bhatti: Three-photon excitation of strontium Rydberg levels, Opt Commun 156, p.279–284 (1998)

    Article  ADS  Google Scholar 

  424. {Sect. 5.5} D.J. Maas, D.I. Duncan, R.B. Vrijen, W.J. Vanderzande, L.D. Noordam: Vibrational ladder climbing in NO by (sub)picosecond frequencychirped infrared laser pulses, Chem Phys Lett 290, p.75–80 (1998)

    Article  ADS  Google Scholar 

  425. {Sect. 5.5} H. Shim, M.G. Liu, H.B. Chang, G.I. Stegeman: Four-photon absorption in the single-crystal polymer bis (paratoluene) sulfonate, Optics Letters 23, p.430–432 (1998)

    Article  ADS  Google Scholar 

  426. {Sect. 5.5} M. Castillejo, M. Martin, R. Denalda, J. Solis: Nanosecond versus picosecond near UV multiphoton dissociation of ketene, Chem Phys Lett 268, p.465–470 (1997)

    Article  ADS  Google Scholar 

  427. {Sect. 5.5} J. Thogersen, J.D. Gill, H.K. Haugen: Stepwise multiphoton excitation of the 4f (2)5d configuration in Nd3+:YLF, Opt Commun 132, p.83–88 (1996)

    Article  ADS  Google Scholar 

  428. {Sect. 5.5} J.D. Bhawalkar, G.S. He, P.N. Prasad: Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting, Opt. Comm. 119, p.587–590 (1995)

    Article  ADS  Google Scholar 

  429. {Sect. 5.5} M. Hippler, M. Quack, R. Schwarz, G. Seyfang, S. Matt, T. Mark: Infrared multiphoton excitation, dissociation and ionization of C-60, Chem Phys Lett 278, p.111–120 (1997)

    Article  ADS  Google Scholar 

  430. {Sect. 5.5} N.P. Lockyer, J.C. Vickerman: Single photon and femtosecond multiphoton ionisation of the dipeptide valyl-valine, Int J Mass Spectrom 197, p.197–209 (2000)

    Article  Google Scholar 

  431. {Sect. 5.5} M.J. DeWitt, R.J. Levis: Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields, Phys Rev Lett 81, p.5101–5104 (1998)

    Article  ADS  Google Scholar 

  432. {Sect. 5.5} J. Wei, B. Zhang, L. Fang, L.D. Zhang, J.Y. Cai: REMPI time-of-flight mass spectra of C2H7N isomers, Opt Commun 156, p.331–336 (1998)

    Article  ADS  Google Scholar 

  433. {Sect. 5.5} K.W.D. Ledingham, C. Kosmidis, S. Georgiou, S. Couris, R.P. Singhal: A comparison of the femto-, pico-and nano-second multiphoton ionization and dissociation processes of NO2 at 248 and 496 nm, Chem Phys Lett 247, p.555–563 (1995)

    Article  ADS  Google Scholar 

  434. {Sect. 5.5} T. Baumert, M. Grosser, R. Thalweiser, G. Gerber: Femtosecond Time-Resolved Molecular Multphoton-Ionisation: The Na2 System, Phys. Rev. Lett. 67, p.3753–3756 (1991)

    Article  ADS  Google Scholar 

  435. {Sect. 5.5} N. Tan-no, k. Ohkawara, H. Inaba: Coherent Transient Multiphoton Scattering in a Resonant Two-Level System, Phys. Rev. Lett. 46, p.1282–1285 (1981)

    Article  ADS  Google Scholar 

  436. {Sect. 5.5} P.A. Schulz, Aa. S. Sudbo, E. R. Grant, Y. R. Shen, Y. T. Lee: Multiphoton dissociation of SF6 by a molecular beam method, J. Chem. Phys. 72 p.4985–4995 (1980)

    Article  ADS  Google Scholar 

  437. {Sect. 5.5} J.G. Black, P. Kolodner, M. J. Schulz, E. Yablonovitch, N. Bloembergen Collisionless multiphoton energy deposition and dissociation of SF6, Phys. Rev. A 19, p.704–716 (1979)

    Article  ADS  Google Scholar 

  438. {Sect. 5.5} P. Esherick, J.A. Armstrong, R.W. Dreyfus, J.J. Wynne: Multiphoton Ionization Spectroscopy of High-Lying, Even-Parity States in Calcium, Phys. Rev. Lett. 36, p.1296–1299 (1976)

    Article  ADS  Google Scholar 

  439. {Sect. 5.5} D.K. Sharma, J. Stevenson, G.J. Hoytink: The photo-ionization of mono-and di-sodium tetracene in 2-MTHF at room temperature by nanosecond ruby laser pulses, Chem. Phys. Lett. 29, p.343–348 (1974)

    Article  ADS  Google Scholar 

  440. {Sect. 5.5} o Geppert-Mayer, M Ueber Elementarakte mit zwei Quanten-sprngen, Ann. Phys. 9, p.273–295 (1931)

    Article  Google Scholar 

  441. {Sect. 5.6} F. Legare, I.V. Litvinyuk, P.W. Dooley, F. Quere, A.D. Bandrauk, D.M. Villeneuve, P.B. Corkum: Time-resolved double ionization with few cycle laser pulses — art. no. 093002, Phys Rev Lett 9109, p.3002 (2003)

    Google Scholar 

  442. {Sect. 5.6} M. Rodriguez, R. Sauerbrey, H. Wille, L. Woste, T. Fujii, Y.B. Andre, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, J.P. Wolf: Triggering and guiding megavolt discharges by use of laser-induced ionized filaments, Optics Letters 27, p.772–774 (2002)

    Article  ADS  Google Scholar 

  443. {Sect. 5.6} V. Sturm, R. Noll: Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N-2, and C3H8 for simultaneous C, H, O, and N measurement, Appl Opt 42, p.6221–6225 (2003)

    Article  ADS  Google Scholar 

  444. {Sect. 5.6} I.G. Dors, C.G. Parigger: Computational fluid-dynamic model of laser-induced breakdown in air, Appl Opt 42, p.5978–5985 (2003)

    Article  ADS  Google Scholar 

  445. {Sect. 5.6} V. Detalle, M. Sabsabi, L. StOnge, A. Hamel, R. Heon: Influence of Er:YAG and Nd:YAG wavelengths on laser-induced breakdown spectroscopy measurements under air or helium atmosphere, Appl Opt 42, p.5971–5977 (2003)

    Article  ADS  Google Scholar 

  446. {Sect. 5.6} V.I. Babushok, F.C. DeLucia, P.J. Dagdigian, M.J. Nusca, A.W. Miziolek: Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead, Appl Opt 42, p.5947–5962 (2003)

    Article  ADS  Google Scholar 

  447. {Sect. 5.6} D.M. Simanovskii, H.A. Schwettman, H. Lee, A.J. Welch: Midinfrared optical breakdown in transparent dielectrics — art. no. 107601, Phys Rev Lett 9110, p.7601 (2003)

    Google Scholar 

  448. {Sect. 5.6} Y.L. Chen, J.W.L. Lewis: Visualization of laser-induced break-down and ignition, Opt Express 9, p.360–372 (2001)

    Article  ADS  Google Scholar 

  449. {Sect. 5.6} C.H. Fan, J.P. Longtin: Modeling optical breakdown in dielectrics during ultrafast laser processing, Appl Opt 40, p.3124–3131 (2001)

    Article  ADS  Google Scholar 

  450. {Sect. 5.6} N. Akozbek, M. Scalora, C.M. Bowden, S.L. Chin: White-light continuum generation and filamentation during the propagation of ultrashort laser pulses in air, Opt Commun 191, p.353–362 (2001)

    Article  ADS  Google Scholar 

  451. {Sect. 5.6} M. Li, S. Menon, J.P. Nibarger, G.N. Gibson: Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics, Phys Rev Lett 82, p.2394–2397 (1999)

    Article  ADS  Google Scholar 

  452. {Sect. 5.6} M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz: Femtosecond optical breakdown in dielectrics, Phys Rev Lett 80, p.4076–4079 (1998)

    Article  ADS  Google Scholar 

  453. {Sect. 5.6} J. Noack, D.X. Hammer, G.D. Noojin, B.A. Rockwell, A. Vogel: Influence of pulse duration on mechanical effects after laser-induced breakdown in water, J Appl Phys 83, p.7488–7495 (1998)

    Article  ADS  Google Scholar 

  454. {Sect. 5.6} E.N. Glezer, C.B. Schaffer, N. Nishimura, E. Mazur: Minimally disruptive laser-induced breakdown in water, Optics Letters 22, p.1817–1819 (1997)

    Article  ADS  Google Scholar 

  455. {Sect. 5.6} V.E. Peet, R.V. Tsubin: Multiphoton ionization and optical breakdown of xenon in annular laser beams, Opt Commun 134, p.69–74 (1997)

    Article  ADS  Google Scholar 

  456. {Sect. 5.6} I.C.E. Turcu, M.C. Gower, P. Huntington: Measurement of KrF laser breakdown threshold in gases, Opt Commun 134, p.66–68 (1997)

    Article  ADS  Google Scholar 

  457. {Sect. 5.6} T. Yagi, Y.S. Huo: Laser-induced breakdown in H-2 gas at 248 nm, Appl Opt 35, p.3183–3184 (1996)

    Article  ADS  Google Scholar 

  458. {Sect. 5.6} A. Kummrow: Effect of optical breakdown on stimulated Brillouin scattering in focused beam cells, J. Opt. Soc. Am. B 12, p.1006–1011 (1995)

    Article  ADS  Google Scholar 

  459. {Sect. 5.6} R.A. Mullen: Multiple-Short-Pulse Stimulated Brillouin Scattering for Trains of 200 ps Pulses at 1.06 μm, IEEE J. QE-26, p.1299–1303 (1990)

    Article  Google Scholar 

  460. {Sect. 5.6} R.A. Mullen, J.N. Matossian: Quenching optical breakdown with an applied electric field, Opt. Lett. 15, p.601–603 (1990)

    Article  ADS  Google Scholar 

  461. {Sect. 5.6} Y.S. Huo, A.J. Alcock, O.L. Bourne: A Time-Resolved Study of Sub-Nanosecond Pulse Generation by the Combined Effects of Stimulated Brillouin Scattering and Laser-Induced Breakdown, Appl. Phys. B 38, p.125–129 (1985)

    Article  ADS  Google Scholar 

  462. {Sect. 5.6} S.B. Papernyi, V.F. Petrov, V.A. Serebryakov, V.R. Startsev: Competition between stimulated Brillouin scattering and optical breakdown in argon, Sov. J. Quantum Electron. 13, p.293–297 (1983)

    Article  ADS  Google Scholar 

  463. {Sect. 5.6} N. Bloembergen: Laser-Induced Electric Breakdown in Solids, IEEE J. QE-10, p.375–386 (1974)

    Article  Google Scholar 

  464. {Sect. 5.6} P.N. Voronov, G.A. Delone, N.B. Delone: Multiphoton Ionization of Atoms. II. Ionization of Krypton by Ruby-Laser Radiation, Sov. Phys. JETP 24, p.1122–1135 (1967)

    ADS  Google Scholar 

  465. {Sect. 5.6} H. Nakano, T. Nishikawa, N. Uesugi: Strongly enhanced soft x-ray emission at 8 nm from plasma on a neodymium-doped glass surface heated by femtosecond laser pulses, Appl Phys Lett 72, p.2208–2210 (1998)

    Article  ADS  Google Scholar 

  466. {Sect. 5.6} M. Schnurer, C. Spielmann, P. Wobrauschek, C. Streli, N.H. Burnett, C. Kan, K. Ferencz, R. Koppitsch, Z. Cheng, T. Brabec et al.: Coherent 0.5-keV X-ray emission from helium driven by a sub-10-fs laser, Phys Rev Lett 80, p.3236–3239 (1998)

    Article  ADS  Google Scholar 

  467. {Sect. 5.6} Z.Z. Xu, Y.S. Wang, K. Zhai, X.X. Li, Y.Q. Liu, X.D. Yang, Z.Q. Zhang, W.Q. Zhang: Direct experimental evidence of influence of ionizations on high-order harmonic generation, Opt Commun 158, p.89–92 (1998)

    Article  ADS  Google Scholar 

  468. {Sect. 5.6} M. Yoshida, Y. Fujimoto, Y. Hironaka, K.G. Nakamura, K. Kondo, M. Ohtani, H. Tsunemi: Generation of picosecond hard x rays by tera watt laser focusing on a copper target, Appl Phys Lett 73, p.2393–2395 (1998)

    Article  ADS  Google Scholar 

  469. {Sect. 5.6} V.G. Babaev, M.S. Dzhidzhoev, V.M. Gordienko, M.A. Joukov, A.B. Savelev, V.Y. Timoshenko, A.A. Shashkov, R.V. Volkov: X-ray production and second harmonic generation by superintense femtosecond laser pulses in the solids with restricted thermal conduction, J Nonlinear Opt Physics Mat 6, p.495–505 (1997)

    Article  ADS  Google Scholar 

  470. {Sect. 5.6} A. Behjat, J. Lin, G.J. Tallents, A. Demir, M. Kurkcuoglu, C.L.S. Lewis, A.G. MacPhee, S.P. Mccabe, P.J. Warwick, D. Neely, et al.: The effects of multi-pulse irradiation on X-ray laser media, Opt Commun 135, p.49–54 (1997)

    Article  ADS  Google Scholar 

  471. {Sect. 5.6} T. Ditmire, R.A. Smith, R.S. Marjoribanks, G. Kulcsar, M.H.R. Hutchinson: X-ray yields from Xe clusters heated by short pulse high intensity lasers, Appl Phys Lett 71, p.166–168 (1997)

    Article  ADS  Google Scholar 

  472. {Sect. 5.6} C. Kan, N.H. Burnett, C.E. Capjack, R. Rankin: Coherent XUV generation from gases ionized by several cycle optical pulses, Phys Rev Lett 79, p.2971–2974 (1997)

    Article  ADS  Google Scholar 

  473. {Sect. 5.6} W.P. Leemans, R.W. Schoenlein, P. Volfbeyn, A.H. Chin, T.E. Glover, P. Balling, M. Zolotorev, K.J. Kim, S. Chattopadhyay, C.V. Shank: Interaction of relativistic electrons with ultrashort laser pulses: Generation of femtosecond X-rays and microprobing of electron beams, IEEE J QE-33, p.1925–1934 (1997)

    Article  Google Scholar 

  474. {Sect. 5.6} O. Meighan, A. Gray, J.P. Mosnier, W. Whitty, J.T. Costello, C.L.S. Lewis, A. Macphee, R. Allott, I.C.E. Turcu, A. Lamb: Short-pulse, extreme-ultraviolet continuum emission from a table-top laser plasma light source, Appl Phys Lett 70, p.1497–1499 (1997)

    Article  ADS  Google Scholar 

  475. {Sect. 5.6} J.F. Pelletier, M. Chaker, J.C. Kieffer: Soft x-ray emission produced by a sub-picosecond laser in a single-and double-pulse scheme, J Appl Phys 81, p.5980–5983 (1997)

    Article  ADS  Google Scholar 

  476. {Sect. 5.6} P. Celliers, L.B. DaSilva, C.B. Dane, S. Mrowka, M. Norton, J. Harder, L. Hackel, D.L. Matthews, H. Fiedorowicz, A. Bartnik, et al.: Optimization of x-ray sources for proximity lithography produced by a high average power Nd:glass laser, J Appl Phys 79, p.8258–8268 (1996)

    Article  ADS  Google Scholar 

  477. {Sect. 5.6} B.N. Chichkov, C. Momma, A. Tunnermann, S. Meyer, T. Menzel, B. Wellegehausen: Hard-x-ray radiation from short-pulse laser-produced plasmas, Appl Phys Lett 68, p.2804–2806 (1996)

    Article  ADS  Google Scholar 

  478. {Sect. 5.6} M. Fraenkel, A. Zigler, Y. Horowitz, A. Ludmirsky, S. Maman, E. Moshe, Z. Henis, S. Eliezer: Optimal x-ray source development in the spectral range 4–14 angstrom using a Nd:YAG high power laser, J Appl Phys 80, p.5598–5603 (1996)

    Article  ADS  Google Scholar 

  479. {Sect. 5.6} M. Schnurer, P.V. Nickles, M.P. Kalachnikov, W. Sandner, R. Nolte, P. Ambrosi, J.L. Miquel, A. Dulieu, A. Jolas: Characteristics of hard x-ray emission from subpicosecond laser-produced plasmas, J Appl Phys 80, p.5604–5609 (1996)

    Article  ADS  Google Scholar 

  480. {Sect. 5.6} R.C. Spitzer, T.J. Orzechowski, D.W. Phillion, R.L. Kauffman, C. Cerjan: Conversion efficiencies from laser-produced plasmas in the extreme ultraviolet regime, J Appl Phys 79, p.2251–2258 (1996)

    Article  ADS  Google Scholar 

  481. {Sect. 5.6} D.H. Gill, A.A. Dougal: Breakdown Minima due to Electron-impact Ionization in Super-High-Pressure Gases Irradiated by a Focused Giant-Pulse Laser, Phys. Rev. Lett. 15, p.845–847 (1965)

    Article  ADS  Google Scholar 

  482. {Sect. 5.6} N.S. Kim, A. Djaoui, M.H. Key, D. Neely, S.G. Preston, M. Zepf, C.G. Smith, J.S. Wark, J. Zhang, A.A. Offenberger: Extreme ultraviolet line emission at 24.7 nm from Li-like nitrogen plasma produced by a short KrF excimer laser pulse, Appl Phys Lett 69, p.884–886 (1996)

    Article  ADS  Google Scholar 

  483. {Sect. 5.6} E.E.B. Campbell, K. Hansen, K. Hoffmann, G. Korn, M. Tchaplyguine, M. Wittmann, I.V. Hertel: From above threshold ionization to statistical electron emission: The laser pulse-duration dependence of C-60 photoelectron spectra, Phys Rev Lett 84, p.2128–2131 (2000)

    Article  ADS  Google Scholar 

  484. {Sect. 5.6} E.D. Lancaster, K.L. McNesby, R.G. Daniel, A.W. Miziolek: Spectroscopic analysis of fire suppressants and refrigerants by laser-induced breakdown spectroscopy, Appl Opt 38, p.1476–1480 (1999)

    Article  ADS  Google Scholar 

  485. {Sect. 5.6} M. Saito, S. Izumida, K. Onishi, J. Akazawa: Detection efficiency of microparticles in laser breakdown water analysis, J Appl Phys 85, p.6353–6357 (1999)

    Article  ADS  Google Scholar 

  486. {Sect. 5.6} M. Nishiura, M. Sasao, M. Bacal: H-laser photodetachment at 1064, 532, and 355 nm in plasma, J Appl Phys 83, p.2944–2949 (1998)

    Article  ADS  Google Scholar 

  487. {Sect. 5.6} D.X. Hammer, R.J. Thomas, G.D. Noojin, B.A. Rockwell, P.K. Kennedy, W.P. Roach: Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media, IEEE J QE-32, p.670–678 (1996)

    Article  Google Scholar 

  488. {Sect. 5.6} S. Chelkowski, P.B. Corkum, A.D. Bandrauk: Femtosecond Coulomb explosion imaging of vibrational wave functions, Phys Rev Lett 82, p.3416–3419 (1999)

    Article  ADS  Google Scholar 

  489. {Sect. 5.6} O. Baghdassarian, B. Tabbert, G.A. Williams: Luminescence characteristics of laser-induced bubbles in water, Phys Rev Lett 83, p.2437–2440 (1999)

    Article  ADS  Google Scholar 

  490. {Sect. 5.6} L. Koller, M. Schumacher, J. Kohn, S. Teuber, J. Tiggesbaumker, K.H. MeiwesBroer: Plasmon-enhanced multi-ionization of small metal clusters in strong femtosecond laser fields, Phys Rev Lett 82, p.3783–3786 (1999)

    Article  ADS  Google Scholar 

  491. {Sect. 5.6} M. Frenz, F. Konz, H. Pratisto, H.P. Weber, A.S. Silenok, V.I. Konov: Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water, J Appl Phys 84, p.5905–5912 (1998)

    Article  ADS  Google Scholar 

  492. {Sect. 5.6} A.B. Fedotov, N.I. Koroteev, A.N. Naumov, D.A. Sidorovbiryukov, A.M. Zheltikov: Coherent four-wave mixing in a laser-preproduced plasma: Optical frequency conversion and two-dimensional mapping of atoms and ions, J Nonlinear Opt Physics Mat 6, p.387–410 (1997)

    Article  ADS  Google Scholar 

  493. {Sect. 5.6} Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Cook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, C.R. Thompson: Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses, IEEE J QE-33, p.127–137 (1997)

    Article  Google Scholar 

  494. {Sect. 5.6} D. Giulietti, L.A. Gizzi, A. Giulietti, A. Macchi, D. Teychenne, P. Chessa, A. Rousse, G. Cheriaux, J.P. Chambaret, G. Darpentigny: Observation of solid-density laminar plasma transparency to intense 30 femtosecond laser pulses, Phys Rev Lett 79, p.3194–3197 (1997)

    Article  ADS  Google Scholar 

  495. {Sect. 5.6} N. Tsuda, J. Yamada: Observation of forward breakdown mechanism in high-pressure argon plasma produced by irradiation by an excimer laser, J Appl Phys 81, p.582–586 (1997)

    Article  ADS  Google Scholar 

  496. {Sect. 5.6} D.E. Hinkel, E.A. Williams, C.H. Still: Laser beam deflection induced by transverse plasma flow, Phys Rev Lett 77, p.1298–1301 (1996)

    Article  ADS  Google Scholar 

  497. {Sect. 5.6} F.H. Loesel, M.H. Niemz, J.F. Bille, T. Juhasz: Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model, IEEE J QE-32, p.1717–1722 (1996)

    Article  Google Scholar 

  498. {Sect. 5.6} J.D. Moody, B.J. Macgowan, D.E. Hinkel, W.L. Kruer, E.A. Williams, K. Estabrook, R.L. Berger, R.K. Kirkwood, D.S. Montgomery, T.D. Shepard: First optical observation of intensity dependent laser beam deflection in a flowing plasma, Phys Rev Lett 77, p.1294–1297 (1996)

    Article  ADS  Google Scholar 

  499. {Sect. 5.6} M. Welling, R.I. Thompson, H. Walther: Photodissociation of MgC60 (+) complexes generated and stored in a linear ion trap, Chem Phys Lett 253, p.37–42 (1996)

    Article  ADS  Google Scholar 

  500. {Sect. 5.6} P. Gibbon, R. Forster: Short-pulse laser-plasma interactions, Plasma.Phys. Control. Fusion 38, p.769–793 (1996)

    Article  ADS  Google Scholar 

  501. {Sect. 5.6} Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright: Laser-induced breakdown versus self-focusing for focused picosecond pulses in water, Optics Letters 20, p.1958–1960 (1995)

    Article  ADS  Google Scholar 

  502. {Sect. 5.6} P.K. Kennedy, S.A. Boppart, D.X. Hammer, B.A. Rockwell, G.D. Noojin, W.P. Roach: A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. 2. Comparison to experiment, IEEE J QE-31, p.2250–2257 (1995)

    Article  Google Scholar 

  503. {Sect. 5.6} P.K. Kennedy: A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. 1. Theory, IEEE J QE-31, p.2241–2249 (1995)

    Article  Google Scholar 

  504. {Sect. 5.6} T.X. Phuoc: Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases, Opt Commun 175, p.419–423 (2000)

    Article  ADS  Google Scholar 

  505. {Sect. 5.6} D.X. Hammer, E.D. Jansen, M. Frenz, G.D. Noojin, R.J. Thomas, J. Noack, A. Vogel, B.A. Rockwell, A.J. Welch: Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs, Appl Opt 36, p.5630–5640 (1997)

    Article  ADS  Google Scholar 

  506. {Sect. 5.6} D.X. Hammer, G.D. Noojin, R.J. Thomas, C.E. Clary, B.A. Rockwell, C.A. Toth, W.P. Roach: Intraocular laser surgical probe for membrane disruption by laser-induced breakdown, Appl Opt 36, p.1684–1693 (1997)

    Article  ADS  Google Scholar 

  507. {Sect. 5.7} E. Gaizauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, H. Misawa: Discrete damage traces from filamentation of Gauss-Bessel pulses, Optics Letters 31, p.80–82 (2006)

    Article  ADS  Google Scholar 

  508. {Sect. 5.7} H. Krol, L. Gallais, C. GrezesBesset, J.Y. Natoli, M. Commandre: Investigation of nanoprecursors threshold distribution in laser-damage testing, Opt Commun 256, p.184–189 (2005)

    Article  ADS  Google Scholar 

  509. {Sect. 5.7} R. Chow, M. Runkel, J.R. Taylor: Laser damage testing of small optics for the National Ignition Facility, Appl Opt 44, p.3527–3531 (2005)

    Article  ADS  Google Scholar 

  510. {Sect. 5.7} C.W. Carr, H.B. Radousky, S.G. Demos: Wavelength dependence of laser-induced damage: Determining the damage initiation mechanisms — art. no. 127402, Phys Rev Lett 9112, p.7402 (2003)

    Google Scholar 

  511. {Sect. 5.7} A. During, M. Commandre, C. Fossati, B. Bertussi, J.Y. Natoli, J.L. Rullier, H. Bercegol, P. Bouchut: Integrated photothermal microscope and laser damage test facility for in-situ investigation of nanodefect induced damage, Opt Express 11, p.2497–2501 (2003)

    Article  ADS  Google Scholar 

  512. {Sect. 5.7} L. Gallais, J.Y. Natoli: Optimized metrology for laser-damage measurement: application to multiparameter study, Appl Opt 42, p.960–971 (2003)

    Article  ADS  Google Scholar 

  513. {Sect. 5.7} L. Gallais, J.Y. Natoli, C. Amra: Statistical study of single and multiple pulse laser-induced damage in glasses, Opt Express 10, p.1465–1474 (2002)

    ADS  Google Scholar 

  514. {Sect. 5.7} S.G. Demos, M. Staggs, K. Minoshima, J. Fujimoto: Characterization of laser induced damage sites in optical components, Opt Express 10, p.1444–1450 (2002)

    ADS  Google Scholar 

  515. {Sect. 5.7} J.Y. Natoli, L. Gallais, H. Akhouayri, C. Amra: Laser-induced damage of materials in bulk, thin-film, and liquid forms, Appl Opt 41, p.3156–3166 (2002)

    Article  ADS  Google Scholar 

  516. {Sect. 5.7} S.G. Demos, M. Staggs: Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage, Appl Opt 41, p.1977–1983 (2002)

    Article  ADS  Google Scholar 

  517. {Sect. 5.7} M. Grisham, G. Vaschenko, C.S. Menoni, J.J. Rocca, Y.P. Pershyn, E.N. Zubarev, D.L. Voronov, V.A. Sevryukova, V.V. Kondratenko, A.V. Vinogradov, I.A. Artioukov: Damage to extreme-ultraviolet Sc/Si multilayer mirrors exposed to intense 46.9-nm laser pulses, Optics Letters 29, p.620–622 (2004)

    Article  ADS  Google Scholar 

  518. {Sect. 5.7} E.J. Takahashi, H. Hasegawa, Y. Nabekawa, K. Midorikawa: High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region, Optics Letters 29, p.507–509 (2004)

    Article  ADS  Google Scholar 

  519. {Sect. 5.7} Y. Fu, H.F. Wang, R.Y. Shi, J.X. Cheng: Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy, Opt Express 14, p.3942–3951 (2006)

    Article  ADS  Google Scholar 

  520. {Sect. 5.7} S.Z. Xu, T.Q. Jia, H.Y. Sun, C.B. Li, X. Li, D.H. Feng, J.R. Qiu, Z.Z. Xu: Mechanisms of femtosecond laser-induced breakdown and damage in MgO, Opt Commun 259, p.274–280 (2006)

    Article  ADS  Google Scholar 

  521. {Sect. 5.7} S.G. Demos, M. Staggs, M.R. Kozlowski: Investigation of processes leading to damage growth in optical materials for large-aperture lasers, Appl Opt 41, p.3628–3633 (2002)

    Article  ADS  Google Scholar 

  522. {Sect. 5.7} S. Tzortzakis, B. Lamouroux, A. Chiron, S.D. Moustaizis, D. Anglos, M. Franco, B. Prade, A. Mysyrowicz: Femtosecond and picosecond ultraviolet laser filaments in air: experiments and simulations, Opt Commun 197, p.131–143 (2001)

    Article  ADS  Google Scholar 

  523. {Sect. 5.7} R. M. Wood: Laser Damage in Optical Materials (SPIE Optical Engineering Press, London, 1990)

    Google Scholar 

  524. {Sect. 5.7} E.S. Bliss: Pulse Duration Dependence of Laser Damage Mechanisms, Opto-Electr. 3, p.99–108 (1971)

    Article  Google Scholar 

  525. {Sect. 5.7} F. Loewenthal, R. Tommasini, J.E. Balmer: Single-shot measurement of laser-induced damage thresholds of thin film coatings, Opt Commun 152, p.168–174 (1998)

    Article  ADS  Google Scholar 

  526. {Sect. 5.7} A.C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou: Short-pulse laser damage in transparent materials as a function of pulse duration, Phys Rev Lett 82, p.3883–3886 (1999)

    Article  ADS  Google Scholar 

  527. {Sect. 5.7} F. Dahmani, A.W. Schmid, J.C. Lambropoulos, S. Burns: Dependence of birefringence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number, Appl Opt 37, p.7772–7784 (1998)

    Article  ADS  Google Scholar 

  528. {Sect. 5.7} S. Papernov, A. Schmid, F. Dahmani: Laser damage in polymer waveguides driven purely by a nonlinear, transverse scattering process, Opt Commun 147, p.112–116 (1998)

    Article  ADS  Google Scholar 

  529. {Sect. 5.7} Y. Zhao, Z.C. Feng, Y. Liang, H.W. Sheng: Laser-induced coloration of WO3, Appl Phys Lett 71, p.2227–2229 (1997)

    Article  ADS  Google Scholar 

  530. {Sect. 5.7} J.P. Féve, B. Boulanger, G. Manier, H. Albrecht: Repetition rate dependence of gray-tracking in KTiOPO4 during second-harmonic generation at 532 nm, Appl. Phys. Lett. 70, p.277–279 (1997)

    Article  ADS  Google Scholar 

  531. {Sect. 5.7} B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry: Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Phys. Rev. B 53, p.1749–1761 (1996)

    Article  ADS  Google Scholar 

  532. {Sect. 5.7} V. Pruneri, P.G. Kazansky, J. Webjörn, P.St.J. Russell, D.C. Hanna: Self-organized light-induced scattering in periodically poled lithium niobate, Appl. Phys. Lett. 67, p.1957–1959 (1995)

    Article  ADS  Google Scholar 

  533. {Sect. 5.7} M.P. Scripsick, D.N. Lolacono, J. Rottenberg, S.H. Goellner, L.E. Halliburton, F.K. Hopkins: Defects responsible for gray tracks in flux-grown KTiOPO4, Appl. Phys. Lett. 66, p.34283430 (1995)

    Article  Google Scholar 

  534. {Sect. 5.7} B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry: Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Phys. Rev. Lett. 74, p.2248–2251 (1995)

    Article  ADS  Google Scholar 

  535. {Sect. 5.7} B. Boulanger, M.M. Fejer, R. Blachman, P.F. Bordui: Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm, Appl. Phys. Lett. 65, p.2401–2403 (1994)

    Article  ADS  Google Scholar 

  536. {Sect. 5.7} M.P. Scripsick, G.J. Edwards, L.E. Halliburton, R.F. Belt, G.M. Loiacono: Effect of crystal growth on Ti3+ centers in KTiOPO4, J. Appl. Phys. 76, p.773–776 (1994)

    Article  ADS  Google Scholar 

  537. {Sect. 5.7} G.M. Loiacono, D.N. Loiacono, T. McGee, M. Babb: Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks, J. Appl. Phys. 72, p.2705–2712 (1992)

    Article  ADS  Google Scholar 

  538. {Sect. 5.7} J.C. Jacco, D.R. Rockafellow, E.A. Teppo: Bulk-darkening threshold of flux-grown KTiOPO4, Opt. Lett. 16, p.1307–1309 (1991)

    Article  ADS  Google Scholar 

  539. {Sect. 5.7} J.K. Tyminski: Photorefractive damage in KTP used as second-harmonic generator, J. Appl. Phys. 70, p.5570–5576 (1991)

    Article  ADS  Google Scholar 

  540. {Sect. 5.7} G.A. Magel, M.M. Fejer, R.L. Byer: Quase-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3, Appl. Phys. Lett. 56, p.108–110 (1990)

    Article  ADS  Google Scholar 

  541. {Sect. 5.7} K.E. Montgomery, F.P. Milanovich: High-laser-damage-threshold potassium dihydrogen phosphate crystals, J. Appl. Phys. 68, p.3979–3982 (1990)

    Article  ADS  Google Scholar 

  542. {Sect. 5.7} S.C. Jones, P. Braunlich, R.T. Casper, X.-A. Shen, P. Kelly: Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials, Opt. Eng. 28, p.1039–1068 (1989)

    ADS  Google Scholar 

  543. {Sect. 5.7} D.A. Bryan, R.R. Rice, R. Gerson, H.E. Tomaschke, K.L. Sweeney, L.E. Halliburton: Magnesium-doped lithium niobate for higher optical power applications, Opt. Eng. 24, p.138–143 (1985)

    Google Scholar 

  544. {Sect. 5.7} N. Bloembergen: Role of Cracks, Pores, and Absorbing Inclusions on Laser Induced Damage Threshold at Surfaces of Transparent Dielectrics, Appl. Opt. 12, p.661–664 (1973)

    Article  ADS  Google Scholar 

  545. {Sect. 5.7} N.L. Boling, G. Dubé: Laser-induced inclusion damage at surfaces of transparent dielectrics, Appl. Phys. Lett. 23, p.658–660 (1973)

    Article  ADS  Google Scholar 

  546. {Sect. 5.7} N.L. Boling, M.D. Crisp, G. Dubé: Laser Induced Surface Damage, Appl. Opt. 12, p.650–660 (1973)

    Article  ADS  Google Scholar 

  547. {Sect. 5.7} M.D. Crisp, N.L. Boling, G. Dubé: Importance of Fresnel reflections in laser surface damage transparent dielectrics, Appl. Phys. Lett. 21, p.364–366 (1972)

    Article  ADS  Google Scholar 

  548. {Sect. 5.7} R.W. Hopper, D.R. Uhlmann: Mechanism of Inclusion Damage in Laser Glass, J. Appl. Phys. 41, p.4023–4037 (1970)

    Article  ADS  Google Scholar 

  549. {Sect. 5.7} W.G. Wagner, H.A. Haus, J.H. Marburger: Large-Scale Self-Trapping of Optical Beams in the Paraxial Ray Approximation, Phys. Rev. 175, p.256–266 (1968)

    Article  ADS  Google Scholar 

  550. {Sect. 5.7} M. Castillejo, S. Couris, E. Koudoumas, M. Martin: Ionization and fragmentation of aromatic and single-bonded hydrocarbons with 50 fs laser pulses at 800 nm, Chem Phys Lett 308, p.373–380 (1999)

    Article  ADS  Google Scholar 

  551. {Sect. 5.7} S. Wennmalm, R. Rigler: On death numbers and survival times of single dye molecules, J Phys Chem B 103, p.2516–2519 (1999)

    Article  Google Scholar 

  552. {Sect. 5.7} M. Castillejo, S. Couris, E. Lane, M. Martin, J. Ruiz: Laser photodissociation of ketene at 230 nm, Chem Phys 232, p.353–360 (1998)

    Article  Google Scholar 

  553. {Sect. 5.7} S. Popov: Dye photodestruction in a solid-state dye laser with a polymeric gain medium, Appl Opt 37, p.6449–6455 (1998)

    Article  ADS  Google Scholar 

  554. {Sect. 5.7} T. Shibata, T. Suzuki: Photofragment ion imaging with femto-second laser pulses, Chem Phys Lett 262, p.115–119 (1996)

    Article  ADS  Google Scholar 

  555. {Sect. 5.7} R.K. Talukdar, M. Hunter, R.F. Warren, J.B. Burkholder, A.R. Ravishankara: UV laser photodissociation of CF2ClBr and CF2Br2 at 298 K: Quantum yields of Cl, Br, and CF2, Chem Phys Lett 262, p.669–674 (1996)

    Article  ADS  Google Scholar 

  556. {Sect. 5.7} D.M. Burland, F. Carmona, J. Pacansky: The photodissociation of s-tetrazine and dimethyl-s-tetrazine, Chem. Phys. Lett. 56, p.221–226 (1978)

    Article  ADS  Google Scholar 

  557. {Sect. 5.7} S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed: Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence, J Phys Chem A 103, p.1165–1170 (1999)

    Article  Google Scholar 

  558. {Sect. 5.7} A. Saemann, K. Eidmann: X-ray emission from metallic (Al) and dielectric (glass) targets irradiated by intense ultrashort laser pulses, Appl Phys Lett 73, p.1334–1336 (1998)

    Article  ADS  Google Scholar 

  559. {Sect. 5.7} I.M. Hodge: Physical aging in polymer glasses, Science 267, p.1945–1947 (1995)

    Article  ADS  Google Scholar 

  560. {Sect. 5.7} A.J. Campillo, S.L. Shapiro, B.R. Suydam: Relationship of self-focusing to spatial instability modes, Appl. Phys. Lett. 24, p.178–180 (1974)

    Article  ADS  Google Scholar 

  561. {Sect. 5.7} A.J. Campillo, S.L. Shapiro, B.R. Suydam: Periodic breakup of optical beams due to self-focusing, Appl. Phys. Lett. 23, p.628–630 (1973)

    Article  ADS  Google Scholar 

  562. {Sect. 5.7} M.M.T. Loy, Y.R. Shen: Study of Self-Focusing and Small-Scale Filaments of Light in Nonlinear Media, IEEE J. QE-9, p.409–422 (1973)

    Article  Google Scholar 

  563. {Sect. 5.7} E.L. Kerr: Filamentary Tracks Formed in Transparent Optical Galss by Laser Beam Self-Focusing. II. Theoretical Analysis, Phys. Rev. A 4, p.1195–1218 (1971)

    Article  ADS  Google Scholar 

  564. {Sect. 5.7} E.L. Dawes, J.H. Marburger: Computer Studies in Self-Focusing, Phys. Rev. 179, p.862–868 (1969)

    Article  ADS  Google Scholar 

  565. {Sect. 5.8} D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin, Heidelberg, New York, 1996)

    Google Scholar 

  566. {Sect. 5.8} R. Iffländer: Solid-State Lasers for Materials Processing (Springer, Heidelberg, Berlin, New York, 2001)

    Google Scholar 

  567. {Sect. 5.8} J. C. Miller (ed.): Laser Ablation (Springer, Berlin, Heidelberg, New York, 1994)

    Google Scholar 

  568. {Sect. 5.8} M. Haag, H. Hugel, C.E. Albright, S. Ramasamy: CO2 laser light absorption characteristics of metal powders, J Appl Phys 79, p.3835–3841 (1996)

    Article  ADS  Google Scholar 

  569. {Sect. 5.8} A.F.H. Kaplan: An analytical model of metal cutting with a laser beam, J Appl Phys 79, p.2198–2208 (1996)

    Article  ADS  Google Scholar 

  570. {Sect. 5.8} C.J. Nonhof: Material processing with Nd-lasers, Electrochem. Publ. 34p.128 (1988)

    Google Scholar 

  571. {Sect. 5.8} H. Dachraoui, W. Husinsky: Thresholds of plasma formation in silicon identified by optimizing the ablation laser pulse form — art. no. 107601, Phys Rev Lett 9710, p.7601 (2006)

    Google Scholar 

  572. {Sect. 5.8} G. Vaschenko, A.G. Etxarri, C.S. Menoni, J.J. Rocca, O. Hemberg, S. Bloom, W. Chao, E.H. Anderson, D.T. Attwood, Y. Lu, B. Parkinson: Nanometer-scale ablation with a table-top soft x-ray laser, Optics Letters 31, p.3615–3617 (2006)

    Article  ADS  Google Scholar 

  573. {Sect. 5.8} J.S. Yahng, B.H. Chon, C.H. Kim, S.C. Jeoung, H.R. Kim: Nonlinear enhancement of femtosecond laser ablation efficiency by hybridization with nanosecond laser, Opt Express 14, p.9544–9550 (2006)

    Article  ADS  Google Scholar 

  574. {Sect. 5.8} J. Ren, M. Kelly, L. Hesselink: Laser ablation of silicon in water with nanosecond and femtosecond pulses, Optics Letters 30, p.1740–1742 (2005)

    Article  ADS  Google Scholar 

  575. {Sect. 5.8} J. König, S. Nolte, A. Tunnermann: Plasma evolution during metal ablation with ultrashort laser pulses, Opt Express 13, p.10597–10607 (2005)

    Article  Google Scholar 

  576. {Sect. 5.8} M. Ostermeyer, P. Kappe, R. Menzel, S. Sommer, F. Dausinger: Laser drilling in thin materials with bursts of ns-pulses generated by stimulated Brillouin scattering (SBS), Appl Phys A Mat Sci Process 81, p.923–927 (2005)

    Article  ADS  Google Scholar 

  577. {Sect. 5.8} D. Perez, L.J. Lewis: Ablation of solids under femtosecond laser pulses — art. no. 255504, Phys Rev Lett 8925, p.5504 (2002)

    Google Scholar 

  578. {Sect. 5.8} Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, Z.X. Zhou: Single femtosecond pulse holography using polymethyl methacrylate, Opt Express 10, p.1173–1178 (2002)

    ADS  Google Scholar 

  579. {Sect. 5.8} C. Hahn, T. Lippert, A. Wokaun: Comparison of the ablation behavior of polymer films in the IR and UV with nanosecond and picosecond pulses, J Phys Chem B 103, p.1287–1294 (1999)

    Article  Google Scholar 

  580. {Sect. 5.8} T.E. Itina, W. Marine, M. Autric: Nonstationary effects in pulsed laser ablation, J Appl Phys 85, p.7905–7908 (1999)

    Article  ADS  Google Scholar 

  581. {Sect. 5.8} J. Muramoto, I. Sakamoto, Y. Nakata, T. Okada, M. Maeda: Influence of electric field on the behavior of Si nanoparticles generated by laser ablation, Appl Phys Lett 75, p.751–753 (1999)

    Article  ADS  Google Scholar 

  582. {Sect. 5.8} D. Sands, F.X. Wagner, P.H. Key: Evidence for a thermal mechanism in excimer laser ablation of thin film ZnS on Si, J Appl Phys 85, p.3855–3859 (1999)

    Article  ADS  Google Scholar 

  583. {Sect. 5.8} A. Cavalleri, K. SokolowskiTinten, J. Bialkowski, D. vonder-Linde: Femtosecond laser ablation of gallium arsenide investigated with time-of-flight mass spectroscopy, Appl Phys Lett 72, p.2385–2387 (1998)

    Article  ADS  Google Scholar 

  584. {Sect. 5.8} C. Egami, Y. Kawata, Y. Aoshima, H. Takeyama, F. Iwata, O. Sugihara, M. Tsuchimori, O. Watanabe, H. Fujimura, N. Okamoto: Visible-laser ablation on a nanometer scale using urethane-urea copolymers, Opt Commun 157, p.150–154 (1998)

    Article  ADS  Google Scholar 

  585. {Sect. 5.8} T.W. Hodapp, P.R. Fleming: Modeling topology formation during laser ablation, J Appl Phys 84, p.577–583 (1998)

    Article  ADS  Google Scholar 

  586. {Sect. 5.8} H. Schmidt, J. Ihlemann, B. WolffRottke, K. Luther, J. Troe: Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained, J Appl Phys 83, p.5458–5468 (1998)

    Article  ADS  Google Scholar 

  587. {Sect. 5.8} J. Zhang, K. Sugioka, K. Midorikawa: Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser, Optics Letters 23, p.1486–1488 (1998)

    Article  ADS  Google Scholar 

  588. {Sect. 5.8} T.G. Barton, H.J. Foth, M. Christ, K. Hormann: Interaction of holmium laser radiation and cortical bone: Ablation and thermal damage in a turbid medium, Appl Opt 36, p.32–43 (1997)

    Article  ADS  Google Scholar 

  589. {Sect. 5.8} D.J. Krajnovich: Near-threshold photoablation characteristics of polyimide and poly (ethylene terephthalate), J Appl Phys 82, p.427–435 (1997)

    Article  ADS  Google Scholar 

  590. {Sect. 5.8} X. Liu, D. Du, G. Mourou: Laser ablation and micromachining with ultrashort laser pulses, IEEE J QE-33, p.1706–1716 (1997)

    Article  Google Scholar 

  591. {Sect. 5.8} L.V. Zhigilei, B.J. Garrison: Velocity distributions of molecules ejected in laser ablation, Appl Phys Lett 71, p.551–553 (1997)

    Article  ADS  Google Scholar 

  592. {Sect. 5.8} G.B. Blanchet, C.R. Fincher: Laser ablation: Selective unzipping of addition polymers, Appl Phys Lett 68, p.929–931 (1996)

    Article  ADS  Google Scholar 

  593. {Sect. 5.8} C.G. Gill, T.M. Allen, J.E. Anderson, T.N. Taylor, P.B. Kelly, N.S. Nogar: Low-power resonant laser ablation of copper, Appl Opt 35, p.2069–2082 (1996)

    Article  ADS  Google Scholar 

  594. {Sect. 5.8} W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, F. Krausz: Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps, Appl Phys Lett 69, p.3146–3148 (1996)

    Article  ADS  Google Scholar 

  595. {Sect. 5.8} C. Momma, B.N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, B. Wellegehausen: Short-pulse laser ablation of solid targets, Opt Commun 129, p.134–142 (1996)

    Article  ADS  Google Scholar 

  596. {Sect. 5.8} M.A. Shannon, B. Rubinsky, R.E. Russon: Mechanical stress power measurements during high-power laser ablation, J Appl Phys 80, p.4665–4672 (1996)

    Article  ADS  Google Scholar 

  597. {Sect. 5.8} J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall: Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics, Optics Letters 28, p.301–303 (2003)

    Article  ADS  Google Scholar 

  598. {Sect. 5.8} M. Ams, G.D. Marshall, M.J. Withford: Study of the influence of femtosecond laser polarisation on direct writing of waveguides, Opt Express 14, p.13158–13163 (2006)

    Article  ADS  Google Scholar 

  599. {Sect. 5.8} A.Y. Vorobyev, C.L. Guo: Femtosecond laser nanostructuring of metals, Opt Express 14, p.2164–2169 (2006)

    Article  ADS  Google Scholar 

  600. {Sect. 5.8} A.K. Das: Laser direct writing polymeric single-mode waveguide devices with a rib structure, Appl Opt 42, p.1236–1243 (2003)

    Article  ADS  Google Scholar 

  601. {Sect. 5.8} J.M. FitzGerald, A. Pique, D.B. Chrisey, P.D. Rack, M. Zeleznik, R.C.Y. Auyeung, S. Lakeou: Laser direct writing of phosphor screens for high-definition displays, Appl Phys Lett 76, p.1386–1388 (2000)

    Article  ADS  Google Scholar 

  602. {Sect. 5.8} L.D. Wang, H.S. Kwok: Pulsed laser deposition of organic thin films, Thin Solid Films 363, p.58–60 (2000)

    Article  ADS  Google Scholar 

  603. {Sect. 5.8} M.C. Wanke, O. Lehmann, K. Müller, Q.Z. Wen, M. Stuke: Laser rapid prototyping of photonic band-gap microstructures, Science 275, p.1284–1286 (1997)

    Article  Google Scholar 

  604. {Sect. 5.8} R.L. Gordon, G.W. Forbes: Gaussian beams with optimal focal properties, Opt Commun 124, p.195–201 (1996)

    Article  ADS  Google Scholar 

  605. {Sect. 5.8} D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, C.M. Rouleau: Synthesis of novel thin-film materials by pulsed laser deposition, Science 273, p.898–903 (1996)

    Article  ADS  Google Scholar 

  606. {Sect. 5.8} R.W. Mcgowan, D.M. Giltner, S.A. Lee: Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms, Optics Letters 20, p.2535–2537 (1995)

    Article  ADS  Google Scholar 

  607. {Sect. 5.8} O. Lehmann, M. Stuke: Laser-driven movement of three-dimensional microstructures generated by laser rapid prototyping, Science 270, p.1644–1646 (1995)

    Article  ADS  Google Scholar 

  608. {Sect. 5.8} B. Dragnea, B. Bourguignon: Photoinduced effects in UV laser melting of Si in UHV, Phys Rev Lett 82, p.3085–3088 (1999)

    Article  ADS  Google Scholar 

  609. {Sect. 5.8} E.N. Sobol, M.S. Kitai, N. Jones, A.P. Sviridov, T. Milner, B.J.F. Wong: Heating and structural alterations in cartilage under laser radiation, IEEE J QE-35, p.532–539 (1999)

    Article  Google Scholar 

  610. {Sect. 5.8} C.W. Siders, A. Cavalleri, K. SokolowskiTinten, C. Toth, T. Guo, M. Kammler, M.H. vonHoegen, K.R. Wilson, D. vonderLinde, C.P.J. Barty: Detection of nonthermal molting by ultrafast X-ray diffraction, Science 286, p.1340–1342 (1999)

    Article  Google Scholar 

  611. {Sect. 5.8} S.C. Chen, C.P. Grigoropoulos, H.K. Park, P. Kerstens, A.C. Tarn: Photothermal displacement measurement of transient melting and surface deformation during pulsed laser heating, Appl Phys Lett 73, p.2093–2095 (1998)

    Article  ADS  Google Scholar 

  612. {Sect. 5.8} M. Ii, T.P. Duffey, J. Mazumder: Spatially and temporally resolved temperature measurements of plasma generated in percussion drilling with a diode-pumped Nd: YAG laser, J Appl Phys 84, p.4122–4127 (1998)

    Article  ADS  Google Scholar 

  613. {Sect. 5.8} V.V. Gupta, H.J. Song, J.S. Im: Numerical analysis of excimer-laser-induced melting and solidification of thin Si films, Appl Phys Lett 71, p.99–101 (1997)

    Article  ADS  Google Scholar 

  614. {Sect. 5.8} XD. Lacroix, G. Jeandel: Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser, J Appl Phys 81, p.6599–6606 (1997)

    Article  ADS  Google Scholar 

  615. {Sect. 5.8} J. Xie, A. Kar: Mathematical modeling of melting during laser materials processing, J Appl Phys 81, p.3015–3022 (1997)

    Article  ADS  Google Scholar 

  616. {Sect. 5.8} N. Arnold: Temperature distributions and their evolution in non-planar energy beam microprocessing: A fast algorithm, J Appl Phys 80, p.1291–1298 (1996)

    Article  ADS  Google Scholar 

  617. {Sect. 5.8} B.A. Mehmetli, K. Takahashi, S. Sato: Direct measurement of reflectance from aluminum alloys during CO2 laser welding, Appl Opt 35, p.3237–3242 (1996)

    Article  ADS  Google Scholar 

  618. {Sect. 5.8} S. Nettesheim, R. Zenobi: Pulsed laser heating of surfaces: Nanosecond timescale temperature measurement using black body radiation, Chem Phys Lett 255, p.39–44 (1996)

    Article  ADS  Google Scholar 

  619. {Sect. 5.8} S. Sato, K. Takahashi, B. Mehmetli: Polarization effects of a high-power CO2 laser beam on aluminum alloy weldability, J Appl Phys 79, p.8917–8919 (1996)

    Article  ADS  Google Scholar 

  620. {Sect. 5.8} P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel: Ab initio molecular dynamics simulation of laser melting of silicon, Phys Rev Lett 77, p.3149–3152 (1996)

    Article  ADS  Google Scholar 

  621. {Sect. 5.8} K. Murakami, H.C. Gerritsen, H. van Brug, F. Bijkerk, F.W. Saris, M.J. van der Wiel: Pulsed-Laser-Irradiated Silicon Studied by Time-Resolved X-Ray Absorption (90-300 eVI, Phys. Rev. Lett. 56, p.655–658 (1986)

    Article  ADS  Google Scholar 

  622. {Sect. 5.8} I.W. Boyd, S.C. Moss, T.F. Bogges, A.L. Smirl: Temporally resolved imaging of silicon surfaces melted with intense picosecond 1-μm laser pulses, Appl. Phys. Lett. 46, p.366–368 (1985)

    Article  ADS  Google Scholar 

  623. {Sect. 5.8} M.C. Downer, R.L. Fork, C.V. Shank: Femtosecond imaging of melting and evaporation at a photoexcited silicon surface, J. Opt. Soc. Am. B 2, p.595–599 (1985)

    Article  ADS  Google Scholar 

  624. {Sect. 5.8} P.H. Bucksbaum, J. Bokor: Rapid Melting and Regrowth Velocities in Silicon Heated by Ultraviolet Picosecond Laser Pulses, Phys. Rev. Lett. 53, p.182–185 (1984)

    Article  ADS  Google Scholar 

  625. {Sect. 5.8} S. Williamson, G. Mourou, J.C.M. Li: Time-Resolved Laser-Induced Phase Transformation in Aluminium, Phys. Rev. Lett. 52, p.2364–2367 (1984)

    Article  ADS  Google Scholar 

  626. {Sect. 5.8} C.V. Shank, R. Yen, C. Hirlimann: Femtosecond-Time-Resolved Surface Structural Dynamics of Optically Excited Silicon, Phys. Rev. Lett. 51, p.900–902 (1983)

    Article  ADS  Google Scholar 

  627. {Sect. 5.8} S. Sato, H. Ashida, T. Arai, Y.W. Shi, Y. Matsuura, M. Miyagi: Vacuum-cored hollow waveguide for transmission of high-energy, nanosecond Nd: YAG laser pulses and its application to biological tissue ablation, Optics Letters 25, p.49–51 (2000)

    Article  ADS  Google Scholar 

  628. {Sect. 5.8} S.R. Farrar, D.C. Attril, M.R. Dickinson, T.A. King, A.S. Blinkhorn: Etch rate and spectroscopic ablation studies of Er:YAG laser-irradiated dentine, Appl Opt 36, p.5641–5646 (1997)

    Article  ADS  Google Scholar 

  629. {Sect. 5.8} G.H. Pettit, M.N. Ediger: Corneal-tissue absorption coefficients for 193-and 213-nm ultraviolet radiation, Appl Opt 35, p.3386–3391 (1996)

    Article  ADS  Google Scholar 

  630. {Sect. 5.8} P.T. Staveteig, J.T. Walsh: Dynamic 193-nm optical properties of water, Appl Opt 35, p.3392–3403 (1996)

    Article  ADS  Google Scholar 

  631. {Sect. 5.8} J.K. Kou, V. Zhakhovskii, S. Sakabe, K. Nishihara, S. Shimizu, S. Kawato, M. Hashida, K. Shimizu, S. Bulanov, Y. Izawa et al.: Anisotropic Coulomb explosion of C-60 irradiated with a high-intensity femtosecond laser pulse, J Chem Phys 112, p.5012–5020 (2000)

    Article  ADS  Google Scholar 

  632. {Sect. 5.8} K.W.D. Ledingham, I. Spencer, T. McCanny, R.P. Singhal, M.I.K. Santala, E. Clark, I. Watts, F.N. Beg, M. Zepf, K. Krushelnick et al.: Photonuclear physics when a multiterawatt laser pulse interacts with solid targets, Phys Rev Lett 84, p.899–902 (2000)

    Article  ADS  Google Scholar 

  633. {Sect. 5.8} A. Talebpour, A.D. Bandrauk, S.L. Chin: Fragmentation of benzene in an intense Ti: sapphire laser pulse, Laser Phys 10, p.210–215 (2000)

    Google Scholar 

  634. {Sect. 5.8} M.K. Grimes, A.R. Rundquist, Y.S. Lee, M.C. Downer: Exper-imental identification of “vacuum heating” at femtosecond-laser-irradiated metal surfaces, Phys Rev Lett 82, p.4010–4013 (1999)

    Article  ADS  Google Scholar 

  635. {Sect. 5.8} H. Kwak, K.C. Chou, J. Guo, H.W.K. Tom: Femtosecond laser-induced disorder of the (1 x 1)-relaxed GaAs (110) surface, Phys Rev Lett 83, p.3745–3748 (1999)

    Article  ADS  Google Scholar 

  636. {Sect. 5.8} M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik: Ultrashort-pulse laser machining of dielectric materials, J Appl Phys 85, p.6803–6810 (1999)

    Article  ADS  Google Scholar 

  637. {Sect. 5.8} A. Saemann, K. Eidmann, I.E. Golovkin, R.C. Mancini, E. Andersson, E. Forster, K. Witte: Isochoric heating of solid aluminum by ultrashort laser pulses focused on a tamped target, Phys Rev Lett 82, p.4843–4846 (1999)

    Article  ADS  Google Scholar 

  638. {Sect. 5.8} H. Jelinkova, J. Sulc, P. Cerny, Y.W. Shi, Y. Matsuura, M. Miyagi: High-power Nd: YAG laser picosecond pulse delivery by a polymer-coated silver hollow-glass waveguide, Optics Letters 24, p.957–959 (1999)

    Article  ADS  Google Scholar 

  639. {Sect. 5.8} Y. Matsuura, K. Hanamoto, S. Sato, M. Miyagi: Hollow-fiber delivery of high-power pulsed Nd: YAG laser light, Optics Letters 23, p.1858–1860 (1998)

    Article  ADS  Google Scholar 

  640. {Sect. 5.8} P. Dainesi, J. Ihlemann, P. Simon: Optimization of a beam delivery system for a short-pulse KrF laser used for material ablation, Appl Opt 36, p.7080–7085 (1997)

    Article  ADS  Google Scholar 

  641. {Sect. 5.8} H. Pratisto, M. Frenz, M. Ith, H.J. Altermatt, E.D. Jansen, H.P. Weber: Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water, Appl Opt 35, p.3328–3337 (1996)

    Article  ADS  Google Scholar 

  642. {Sect. 5.8} B. Richou, I. Schertz, I. Gobin, J. Richou: Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: Dependence of the laser-intensity profile on beam propagation, Appl Opt 36, p.1610–1614 (1997)

    Article  ADS  Google Scholar 

  643. {Sect. 5.8} A. Baum, P.J. Scully, M. Basanta, C.L.P. Thomas, P.R. Fielden, N.J. Goddard, W. Perrie, P.R. Chalker: Photochemistry of refractive index structures in poly(Methyl methacrylate) by femtosecond laser irradiation, Optics Letters 32, p.190–192 (2007)

    Article  ADS  Google Scholar 

  644. {Sect. 5.8} L. Shah, M.E. Fermann, J.W. Dawson, C.P.J. Barty: Micro-machining with a 50 W, 50 mu J, sub-picosecond fiber laser system, Opt Express 14, p.12546–12551 (2006)

    Article  ADS  Google Scholar 

  645. {Sect. 5.8} Y. Cheng, K. Sugioka, K. Midorikawa: Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application, Opt Express 13, p.7225–7232 (2005)

    Article  ADS  Google Scholar 

  646. {Sect. 5.8} D. Day, M. Gu: MicroChannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses, Opt Express 13, p.5939–5946 (2005)

    Article  ADS  Google Scholar 

  647. {Sect. 5.8} L. Shah, J. Tawney, M. Richardson, K. Richardson: Self-focusing during femtosecond micromachining of silicate glasses, Ieee J Quantum Electron 40, p.57–68 (2004)

    Article  ADS  Google Scholar 

  648. {Sect. 5.8} G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, S. DeSilvestri: Femtosecond micromachining of symmetric waveguides at 1.5 mu m by astigmatic beam focusing, Optics Letters 27, p.1938–1940 (2002)

    Article  ADS  Google Scholar 

  649. {Sect. 5.8} W.S.O. Rodden, S.S. Kudesia, D.P. Hand, J.D.C. Jones: A comprehensive study of the long pulse Nd: YAG laser drilling of multi-layer carbon fibre composites, Opt Commun 210, p.319–328 (2002)

    Article  ADS  Google Scholar 

  650. {Sect. 5.8} T.E. Dimmick, G. Kakarantzas, T.A. Birks, P.S. Russell: Carbon dioxide laser fabrication of fused-fiber couplers and tapers, Appl Opt 38, p.6845–6848 (1999)

    Article  ADS  Google Scholar 

  651. {Sect. 5.8} S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N.A. Vainos, C. Fotakis: Etching and printing of diffractive optical microstructures by a femtosecond excimer laser, Appl Opt 38, p.2301–2308 (1999)

    Article  ADS  Google Scholar 

  652. {Sect. 5.8} D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, E.E.B. Cambell: Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials, Appl Phys Lett 72, p. 1442–1444 (1998)

    Article  ADS  Google Scholar 

  653. {Sect. 5.8} T.H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur: Microstructuring of silicon with femtosecond laser pulses, Appl Phys Lett 73, p. 1673–1675 (1998)

    Article  ADS  Google Scholar 

  654. {Sect. 5.8} T. Hessler, M. Rossi, R.E. Kunz, M.T. Gale: Analysis and optimization of fabrication of continuous-relief diffractive optical elements, Appl Opt 37, p.4069–4079 (1998)

    Article  ADS  Google Scholar 

  655. {Sect. 5.8} K. Baba, K. Hayashi, I. Syuaib, K. Yamaki, M. Miyagi: Write-once optical data storage media with large reflectance change with metal-island films, Appl Opt 36, p.2421–2426 (1997)

    Article  ADS  Google Scholar 

  656. {Sect. 5.8} G.P. Behrmann, M.T. Duignan: Excimer laser micromachining for rapid fabrication of diffractive optical elements, Appl Opt 36, p.4666–4674 (1997)

    Article  ADS  Google Scholar 

  657. {Sect. 5.8} X.M. Wang, J.R. Leger, R.H. Rediker: Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation, Appl Opt 36, p.4660–4665 (1997)

    Article  ADS  Google Scholar 

  658. {Sect. 5.8} P.A. Atanasova, V.P. Manolov: Laser cutting of wire-wound resistors: Theory and experiments, J Appl Phys 80, p.2003–2008 (1996)

    Article  ADS  Google Scholar 

  659. {Sect. 5.8} W. Chalupczak, C. Fiorini, F. Charra, J.M. Nunzi, P. Raimond: Efficient all-optical poling of an azo-dye copolymer using a low power laser, Opt Commun 126, p.103–107 (1996)

    Article  ADS  Google Scholar 

  660. {Sect. 5.8} K.M. Davis, K. Miura, N. Sugimoto, K. Hirao: Writing wave-guides in glass with a femtosecond laser, Optics Letters 21, p. 1729–1731 (1996)

    Article  ADS  Google Scholar 

  661. {Sect. 5.8} S. Lazare, J. Lopez, J.M. Turlet, M. Kufner, S. Kufner, P. Chavel: Microlenses fabricated by ultraviolet excimer laser irradiation of poly (methyl methacrylate) followed by styrene diffusion, Appl Opt 35, p.4471–4475 (1996)

    Article  ADS  Google Scholar 

  662. {Sect. 5.8} T. Schuster, H. Kuhn, A. Raiber, T. Abeln, F. Dausinger, H. Hugel, M. Klaser, G. Mullervogt: High-precision laser cutting of high-temperature superconductors, Appl Phys Lett 68, p.2568–2570 (1996)

    Article  ADS  Google Scholar 

  663. {Sect. 5.8} Y.Y. Tsui, R. Fedosejevs, C.E. Capjack: Vaporization of aluminum by 50 ps KrF laser pulses, J Appl Phys 80, p.509–512 (1996)

    Article  ADS  Google Scholar 

  664. {Sect. 5.8} B. Bescos, H. Buchenau, R. Hoch, H.J. Schmidtke, G. Gerber: Femtosecond laser ionization of CdTe clusters, Chem Phys Lett 285, p.64–70 (1998)

    Article  ADS  Google Scholar 

  665. {Sect. 5.9.1} D. Maystre: Diffraction Gratings (SPIE Optical Engineering Press, London, 1993)

    Google Scholar 

  666. {Sect. 5.9.1} H.J. Eichler, P. Günter, D.W. Pohl: Laser-Induced Dynamic Gratings, Springer Ser. Opt. Sci, Vol. 50 (Springer, Berlin, Heidelberg, NewYork, Tokyo 1986)

    Google Scholar 

  667. {Sect. 5.9.1} V.A. Zuikov, A.A. Kalachev, V.V. Samartsev, I.V. Negrashov, A.K. Rebane, I. Gallus, O. Ollikainen, U.P. Wild: Spatial and spectral properties of nonequilibrium population gratings induced in a resonant medium by femtosecond pulses, Laser Phys 10, p.368–371 (2000)

    Google Scholar 

  668. {Sect. 5.9.1} Y. Tang, J.P. Schmidt, S.A. Reid: Nanosecond transient grating studies of jet-cooled NO2, J Chem Phys 110, p.5734–5744 (1999)

    Article  ADS  Google Scholar 

  669. {Sect. 5.9.1} N.C.R. Holme, L. Nikolova, P.S. Ramanujam, S. Hvilsted: An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester, Appl Phys Lett 70, p.1518–1520 (1997)

    Article  ADS  Google Scholar 

  670. {Sect. 5.9.1} M.J. Damzen, Y. Matsumoto, G.J. Crofts, R.P.M. Green: Bragg-selectivity of a volume gain grating, Opt Commun 123, p.182–188 (1996)

    Article  ADS  Google Scholar 

  671. {Sect. 5.9.1} D. Trivedi, P. Tayebati, M. Tabat: Measurement of large electro-optic coefficients in thin films of strontium barium niobate (Sr0.6Ba0.4Nb2O6), Appl Phys Lett 68, p.3227–3229 (1996)

    Article  ADS  Google Scholar 

  672. {Sect. 5.9.1} A. Belendez, A. Fimia, L. Carretero, F. Mateos: Self-induced phase gratings due to the inhomogeneous structure of acrylamide photopolymer systems used as holographic recording materials, Appl Phys Lett 67, p.3856–3858 (1995)

    Article  ADS  Google Scholar 

  673. {Sect. 5.9.1} P.R. Hemmer, D.P. Katz, J. Donoghue, M. Croningolomb, M.S. Shahriar, P. Kumar: Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium, Optics Letters 20, p.982–984 (1995)

    Article  ADS  Google Scholar 

  674. {Sect. 5.9.1} R. Macdonald, H. Danlewski: Self induced optical gratings in nematic liquid crystals with a feedback mirror, Optics Letters 20, p.441–443 (1995)

    Article  ADS  Google Scholar 

  675. {Sect. 5.9.1} F.W. Deeg, M.D. Fayer: Analysis of complex molecular dynamics in an organic liquid by polarization selective subpicosecond transient grating experiments, J. Chem. Phys. 91, p.2269–2279 (1989)

    Article  ADS  Google Scholar 

  676. {Sect. 5.9.1} I. McMichael, P. Yeh, P. Beckwith: Nondegenerate two-wave mixing in ruby, Opt. Lett. 13, p.500–502 (1988)

    Article  ADS  Google Scholar 

  677. {Sect. 5.9.1} A. Marcano, O.F. Garcia-Golding, R.Rojas F.: Pump-power dependences of thermal-grating and electronic components of a polarization spectroscopy signal from dye solutions, J. Opt. Soc. Am. B 3, p.3–7 (1986)

    ADS  Google Scholar 

  678. {Sect. 5.9.1} I.-C. Khoo, R. Normandin: The mechanism and Dynamics of Transient Thermal Grating Diffraction in Nematic Liquid Crystal Films, IEEE J. QE-21, p.329–335 (1985)

    Article  Google Scholar 

  679. {Sect. 5.9.1} G. Eyring, M.D. Fayer: A picosecond holographic grating approach to molecular dynamics in oriented liquid crystal films, J. Chem. Phys. 81, p.4314–4321 (1984)

    Article  ADS  Google Scholar 

  680. {Sect. 5.9.1} K.A. Nelson, R. Casalegno, R.J. Dwayne Miller, M.D. Fayer: Laser-induced excited state and ultrasonic wave gratings: Amplitude and phase grating contributions to diffraction, J. Chem. Phys. 77, p.1144–1152 (1982)

    Article  ADS  Google Scholar 

  681. {Sect. 5.9.1} J.R. Andrews, R.M. Hochstrasser: Transient grating effects in resonant four-wave mixing experiment, Chem. Phys. Lett. 76, p.213–217 (1980)

    Article  ADS  Google Scholar 

  682. {Sect. 5.9.1} H.J. Eichler, G. Enterlein, D. Langhans: Investigation of the Spatial Coherence of a Laser Beam by a Laser-Induced Grating Method, Appl. Phys. 23, p.299–302 (1980)

    Article  ADS  Google Scholar 

  683. {Sect. 5.9.1} H.J. Eichler, U. Klein, D. Langhans: Coherence Time Measurement of Picosecond Pulses by a Light-Induced Grating Method, Appl. Phys. 21, p.215–219 (1980)

    Article  ADS  Google Scholar 

  684. {Sect. 5.9.1} J.R. Salcedo, A.E. Siegman: Laser Induced Photoacoustic Grating Effects in Molecular Crystals, IEEE J. QE-15, p.250–258 (1979)

    Article  Google Scholar 

  685. {Sect. 5.9.1} A. v. Jena, H.E. Lessing: Theory of laser-induced amplitude and phase gratings including photoselection, orientational relaxation and population kinetics, Opt. Quant. Electr. 11, p.419–439 (1979)

    Article  Google Scholar 

  686. {Sect. 5.9.1} J.R. Salcedo, A.E. Siegman, D.D. Dlott, M.D. Fayer: Dynamics of Energy Transport in Molecular Crystals: The Picosecond Transient-Grating Method, Phys. Rev. Lett. 41, p.131–134 (1978)

    Article  ADS  Google Scholar 

  687. {Sect. 5.9.1} D.W. Phillion, D.J. Kuizenga, A.E. Siegman: Subnanocecond relaxation time measurements using a transient induced grating method, Appl. Phys. Lett. 27, p.85–87 (1975)

    Article  ADS  Google Scholar 

  688. {Sect. 5.9.1} H. Eichler, G. Salje, H. Stahl: Thermal diffusion measurements using spatially periodic temperature distributions induced by laser light, J. Appl. Phys. 44, p.5383–5388 (1973)

    Article  ADS  Google Scholar 

  689. {Sect. 5.9.1} H. Eichler, G. Enterlein, P. Glozbach, J. Munschau, H. Stahl: Power Requirements and Resolution of Real-Time Holograms in Saturable Absorbers and Absorbing Liquids, Appl. Opt. 11, p.372–375 (1972)

    Article  ADS  Google Scholar 

  690. {Sect. 5.9.1} P. Delaye, G. Roosen: Evaluation of a photorefractive two-beam coupling novelty filter, Opt Commun 165, p.133–151 (1999)

    Article  ADS  Google Scholar 

  691. {Sect. 5.9.1} A. Pecchia, M. Laurito, P. Apai, M.B. Danailov: Studies of two-wave mixing of very broad-spectrum laser light in BaTiO3, J Opt Soc Am B Opt Physics 16, p.917–923 (1999)

    Article  ADS  Google Scholar 

  692. {Sect. 5.9.1} Y. Tomita, S. Matsushima: Photorefractive beam coupling between orthogonally polarized light beams by linear dichroism in Cu-doped potassium sodium strontium barium niobate, J Opt Soc Am B Opt Physics 16, p.111–116 (1999)

    Article  ADS  Google Scholar 

  693. {Sect. 5.9.1} A. Brignon, I. Bongrand, B. Loiseaux, J.P. Huignard: Signal-beam amplification by two-wave mixing in a liquid-crystal light valve, Optics Letters 22, p.1855–1857 (1997)

    Article  ADS  Google Scholar 

  694. {Sect. 5.9.1} S. Maccormack, G.D. Bacher, J. Feinberg, S. OBrien, R.J. Lang, M.B. Klein, B.A. Wechsler: Powerful, diffraction-limited semiconductor laser using photorefractive beam coupling, Optics Letters 22, p.227–229 (1997)

    Article  ADS  Google Scholar 

  695. {Sect. 5.9.1} P. Yeh: Two-Wave Mixing in Nonlinear Media, IEEE J. QE-25, p.484–519 (1989)

    Article  Google Scholar 

  696. {Sect. 5.9.1} I. McMichael, P. Yeh, P. Beckwith: Nondegenerate two-wave mixing in ruby, Opt. Lett. 13, p.500–502 (1988)

    Article  ADS  Google Scholar 

  697. {Sect. 5.9.1} C.V. Heer: Small-signal gain generated by two pump waves in a nonlinear medium, Opt. Lett. 6, p.549–551 (1981)

    Article  ADS  Google Scholar 

  698. {Sect. 5.9.1} J.E. Heebner, R.S. Bennink, R.W. Boyd, R.A. Fisher: Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling, Optics Letters 25, p.257–259 (2000)

    Article  ADS  Google Scholar 

  699. {Sect. 5.9.1} A. Brignon, J.P. Huignard, M.H. Garrett, I. Mnushkina: Spatial beam cleanup of a Nd:YAG laser operating at 1.06 mu m with two-wave mixing in Rh:BaTiO3, Appl Opt 36, p.7788–7793 (1997)

    Article  ADS  Google Scholar 

  700. {Sect. 5.9.1} A. Takada, M. Croningolomb: Laser beam cleanup with photorefractive two-beam coupling, Optics Letters 20, p.1459–1461 (1995)

    Article  ADS  Google Scholar 

  701. {Sect. 5.9.2} S.V. Rao, N.K.M.N Srinivas, D.N. Rao, L. Giribabu, B.G. Maiya, R. Philip, G.R. Kumar: Excited state dynamics in tetra tolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses, Opt Commun 192, p.123–133 (2001)

    Article  ADS  Google Scholar 

  702. {Sect. 5.9.2} P.C. deSouza, G. Nader, T. Catunda, M. Muramatsu, R.J. Horowicz: Transient four-wave mixing in saturable media with a nonlinear refractive index, Opt Commun 163, p.44–48 (1999)

    Article  ADS  Google Scholar 

  703. {Sect. 5.9.2} F. DiTeodoro, E.F. McCormack: The effect of laser bandwidth on the signal detected in two-color, resonant four-wave mixing spectroscopy, J Chem Phys 110, p.8369–8383 (1999)

    Article  ADS  Google Scholar 

  704. {Sect. 5.9.2} K. Morishita, Y. Higuchi, T. Okada: Infrared laser spectroscopic imaging based on degenerate four-wave-mixing spectroscopy combined with frequency-upconversion detection, Optics Letters 24, p.688–690 (1999)

    Article  ADS  Google Scholar 

  705. {Sect. 5.9.2} J.A. Hudgings, K.Y. Lan: Step-tunable all-optical wavelength conversion using cavity-enhanced four-wave mixing, IEEE J QE-34, p.1349–1355 (1998)

    Article  Google Scholar 

  706. {Sect. 5.9.2} H.B. Liao, R.F. Xiao, H. Wang, K.S. Wong, G.K.L. Wong: Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale, Appl Phys Lett 72, p.1817–1819 (1998)

    Article  ADS  Google Scholar 

  707. {Sect. 5.9.2} K.P. Lor, K.S. Chiang: Theory of nondegenerate four-wave mixing in a birefringent optical fibre, Opt Commun 152, p.26–30 (1998)

    Article  ADS  Google Scholar 

  708. {Sect. 5.9.2} P. Ewart, P.G.R. Smith, R.B. Williams: Imaging of trace species distributions by degenerate four-wave mixing: diffraction effects, spatial resolution, and image referencing, Appl Opt 36, p.5959–5968 (1997)

    Article  ADS  Google Scholar 

  709. {Sect. 5.9.2} A. Brignon, G. Feugnet, J.P. Huignard, J.P. Pocholle: Efficient degenerate four wave mixing in a diode pumped microchip Nd:YVO4 amplifier, Optics Letters 20, p.548–550 (1995)

    Article  ADS  Google Scholar 

  710. {Sect. 5.9.2} A. Brignon, J.P. Huignard: Continuous wave operation of saturable gain degenerate four wave mixing in a Nd:YVO4 amplifier, Optics Letters 20, p.2096–2098 (1995)

    Article  ADS  Google Scholar 

  711. {Sect. 5.9.2} G.J. Crofts, R.P.M. Green, M.J. Damzen: Investigation of multipass geometries for efficient degenerate four-wave mixing in Nd:YAG, Opt. Lett. 17, p.920–922 (1992)

    Article  ADS  Google Scholar 

  712. {Sect. 5.9.2} W.M. Dennis, W. Blau, D.J. Bradley: Picosecond degenerate four-wave mixing in soluble polydiacetylenes, Appl. Phys. Lett. 47, p.200–202 (1985)

    Article  ADS  Google Scholar 

  713. {Sect. 5.9.2} D.G. Steel, J.F. Lam: Two-Photon Coherent-Transient Measurement of the Nonradiative Collisionless Dephasing Rate in SF6 via Doppler-Free Degenerate Four-Wave Mixing, Phys. Rev. Lett. 43, p.1588–1591 (1979)

    Article  ADS  Google Scholar 

  714. {Sect. 5.9.2} T. Yajima, H. Souma, Y. Ishida: Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing. II. Experiment on dye solutions, Phys. Rev. A 17, p.324–334 (1978)

    Article  ADS  Google Scholar 

  715. {Sect. 5.9.2} A. Yariv, D.M. Pepper: Amplified reflection, phase conjugation, and oscillation in degenerate Four-wave mixing, Opt. Lett. 1, p.16–18 (1977)

    Article  ADS  Google Scholar 

  716. {Sect. 5.9.2} R.L. Carman, R.Y. Chiao, P.L. Kelley: Observation of Degenerate Stimulated Four-Photon Interaction and Four-Wave Parametric Amplification, Phys. Rev. Lett. 17, p.1281–1283 (1966)

    Article  ADS  Google Scholar 

  717. {Sect. 5.9.2} R.I. Thompson, L. Marmet, B.P. Stoicheff: Effect of counterintuitive time delays in nonlinear mixing, Optics Letters 25, p.120–122 (2000)

    Article  ADS  Google Scholar 

  718. {Sect. 5.9.2} Y.H. Ahn, J.S. Yahng, J.Y. Sohn, K.J. Yee, S.C. Hohng, J.C. Woo, D.S. Kim, T. Meier, S.W. Koch, Y.S. Lim et al.: From exciton resonance to frequency mixing in GaAs multiple quantum wells, Phys Rev Lett 82, p.3879–3882 (1999)

    Article  ADS  Google Scholar 

  719. {Sect. 5.9.2} V.P. Kaiosha, J. Herrmann: Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects, Phys Rev Lett 83, p.544–547 (1999)

    Article  ADS  Google Scholar 

  720. {Sect. 5.9.2} H. Watanabe, T. Omatsu, T. Hirose, A. Hasegawa, M. Tateda: Highly efficient degenerate four-wave mixing with multipass geometries in a polymer laser dye saturable amplifier, Optics Letters 24, p. 1620–1622 (1999)

    Article  ADS  Google Scholar 

  721. {Sect. 5.9.2} O.L. Antipov, A.S. Kuzhelev, D.V. Chausov: Nondegenerate four-wave-mixing measurements of a resonantly induced refractive-index grating in a Nd:YAG amplifier, Optics Letters 23, p.448–450 (1998)

    Article  ADS  Google Scholar 

  722. {Sect. 5.9.2} M.J. LaBuda, J.C. Wright: Vibrationally enhanced four-wave mixing in 1,8-nonadiyne, Chem Phys Lett 290, p.29–35 (1998)

    Article  ADS  Google Scholar 

  723. {Sect. 5.9.2} H. Palm, F. Merkt: Generation of tunable coherent extreme ultraviolet radiation beyond 19 eV by resonant four-wave mixing in argon, Appl Phys Lett 73, p.157–159 (1998)

    Article  ADS  Google Scholar 

  724. {Sect. 5.9.2} K.S. Chiang, K.P. Lor, Y.T. Chow: Nondegenerate four-wave mixing in a birefringent optical fiber pumped by a dye laser, Optics Letters 22, p.510–512 (1997)

    Article  ADS  Google Scholar 

  725. {Sect. 5.9.2} L. Deng, W.R. Garrett, M.G. Payne, D.Z. Lee: Observation of a critical concentration in laser-induced transparency and multiphoton excitation and ionization in rubidium, Optics Letters 21, p.928–930 (1996)

    Article  ADS  Google Scholar 

  726. {Sect. 5.9.2} W. Schmid, T. Vogtmann, M. Schwoerer: A modulation technique fo rmeasuring the optical susceptibility x5 by degenerate four-wave mixing, Opt. Comm. 121, p.55–62 (1995)

    Article  ADS  Google Scholar 

  727. {Sect. 5.9.2} U.P. Wild, A. Renn: Spectral hole burning and holographic image storage, Mol. Cryst. Liq. Cryst. 183, p.119–129 (1990)

    Article  Google Scholar 

  728. {Sect. 5.9.2} R. Beach, D. DeBeer, S.R. Hartmann: Time-delayed four-wave mixing using intense incoherent light, Phys. Rev. A 32, p.3467–3474 (1985)

    Article  ADS  Google Scholar 

  729. {Sect. 5.9.2} F. Vallée, S.C. Wallace, J. Lukasik: Tunable Coherent Vacuum Ultraviolet Generation in Carbon Monoxide in the 1150 A Range, Opt. Comm. 42, p.148–150 (1982)

    Article  ADS  Google Scholar 

  730. {Sect. 5.9.2} M.D. Duncan, P. Oesterlin, F. König, R.L. Byer: Observation of saturation broadening of the coherent anti-Stokes Raman spectrum (CARS) of Acetylene in a pulsed molecular beam, Chem. Phys. Lett. 80, p.253–256 (1981)

    Article  ADS  Google Scholar 

  731. {Sect. 5.9.2} Y. Prior, A.R. Bogdan, M. Dagenais, N. Bloembergen: Pressure-Induced Extra Resonances in Four-Wave Mixing, Phys. Rev. Lett. 46, p.111–114 (1981)

    Article  ADS  Google Scholar 

  732. {Sect. 5.9.2} J.-L. Oudar, R.W. Smith, Y.R. Shen: Polarization-sensitive coherent anti-Stokes Raman spectroscopy, Appl. Phys. Lett. 34, p.758–760 (1979)

    Article  ADS  Google Scholar 

  733. {Sect. 5.9.2} M.A. Henesian, L. Kulevskii, R.L. Byer: cw high resolution CARS spectroscopy of the Q (ny1) Raman line of methane, J. Chem. Phys. 65, p.5530–5531 (1976)

    Article  ADS  Google Scholar 

  734. {Sect. 5.9.2} J.W. Nibler, J.R. McDonald, A.B. Harvey: CARS Measurement of Vibrational Temperatures in Electric Discharges, Opt. Comm. 18, p.371–373 (1976)

    Article  ADS  Google Scholar 

  735. {Sect. 5.9.2} D.M. Bloom, J.R. Yardley, J.F. Young, S.E. Harris: Infrared up-conversion with resonantly two-photon pumped metal vapors, Appl. Phys. Lett. 24, p.427–428 (1974)

    Article  ADS  Google Scholar 

  736. {Sect. 5.9.2} S.D. Kramer, F.G. Parsons, N. Bloembergen: Interference of third-order light mixing and second-harmonic excitation generation in CuCl, Phys. Rev. B 9, p.1853–1856 (1974)

    Article  ADS  Google Scholar 

  737. {Sect. 5.9.2} R.R. Alfano, S.L. Shapiro: Explanation of a Transient Raman Gain Anomaly, Phys. Rev. A2p.2376–2379 (1970)

    Article  ADS  Google Scholar 

  738. {Sect. 5.9.2} R.R. Alfano, S.L. Shapiro: Emission in the Region 4000 to 7000 A via Four-Photon Coupling in Glass, Phys. Rev. Lett. 24, p.584–587 (1970)

    Article  ADS  Google Scholar 

  739. {Sect. 5.9.2} M.W. Bowers, R.W. Boyd: Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation, IEEE J QE-34, p.634–644 (1998)

    Article  Google Scholar 

  740. {Sect. 5.9.2} A.M. Scott, K.D. Ridley: Effect of signal frequency on four-wave mixing through stimulated Brillouin scattering, Opt. Lett. 15, p.1267–1269 (1990)

    Article  ADS  Google Scholar 

  741. {Sect. 5.9.2} K.D. Ridley, A.M. Scott: Comparison between theory and experiment in self-pumped Brillouin-enhanced four-wave mixing, J. Opt. Soc. Am. B 6, p.1701–1708 (1989)

    Article  ADS  Google Scholar 

  742. {Sect. 5.9.2} W.A. Schroeder, M.J. Damzen, M.H.R. Hutchinson: Polarization-Decoupled Brillouin-Enhanced Four-Wave Mixing, IEEE J. QE-25, p.460–469 (1989)

    Article  Google Scholar 

  743. {Sect. 5.9.2} A.M. Scott, K.D. Ridley: A review of Brillouin-enhanced-four-wave-mixing, IEEE J. QE-25, p.438–459 (1989)

    Article  Google Scholar 

  744. {Sect. 5.9.2} D.E. Watkins, K.D. Ridley, A.M. Scott: Self-pumped four-wave mixing using backward and forward Brillouin scattering, J. Opt. Soc. Am. B 6, p.1693–1700 (1989)

    Article  ADS  Google Scholar 

  745. {Sect. 5.9.2} A.M. Scott, P. Waggott: Low-intensity phase conjugation by self-pumped Brillouin-induced four-wave mixing, J. Mod. Opt. 35, p.473–481 (1988)

    Article  ADS  Google Scholar 

  746. {Sect. 5.9.2} Y. Ojima, T. Omatsu: Phase conjugation of pico-second pulses by four wave mixing in a Nd:YVO4 slab amplifier, Opt Express 13, p.3506–3512 (2005)

    Article  ADS  Google Scholar 

  747. {Sect. 5.9.2} T. Bach, M. Jabinsek, P. Gunter, A.A. Grabar, I.M. Stoika, Y.M. Vysochanskii: Self pumped optical phase conjugation at 1.06 mu m in Te-doped Sn2P2S6, Opt Express 13, p.9890–9896 (2005)

    Article  ADS  Google Scholar 

  748. {Sect. 5.9.2} X.W. Xia, D. Hsiung, P.S. Bhatia, M.S. Shahriar, T.T. Grove, P.R. Hemmer: Polarization selective motional holeburning for high efficiency, degenerate optical phase conjugation in rubidium, Opt Commun 191, p.347–351 (2001)

    Article  ADS  Google Scholar 

  749. {Sect. 5.9.2} G. Urushibata, Y. Tamaki, M. Obara: Generation of highly efficient self-pumped phase conjugation femtosecond pulse using photorefractive BaTiO3: CO crystal, Opt Commun 196, p.281–284 (2001)

    Article  ADS  Google Scholar 

  750. {Sect. 5.9.2} J. Minch, S.L. Chuang: Dual-pump four-wave mixing in a double-mode distributed feedback laser, J Opt Soc Am B Opt Physics 17, p.53–62 (2000)

    Article  ADS  Google Scholar 

  751. {Sect. 5.9.2} C.X. Yang: Propagation and self-pumped phase conjugation of femtosecond laser pulses in BaTiO3, J Opt Soc Am B Opt Physics 16, p.871–877 (1999)

    Article  ADS  Google Scholar 

  752. {Sect. 5.9.2} D.H. Yu, J.H. Lee, J.S. Chang: Theory of forward degenerate four-wave mixing in two-level saturable absorbers, J Opt Soc Am B Opt Physics 16, p.1261–1268 (1999)

    Article  ADS  Google Scholar 

  753. {Sect. 5.9.2} M.A. Dugan, A.C. Albrecht: Radiation-matter oscillations and spectal line narrowing in field-correlated four-wave mixing. I. Theory, Phys. Rev. A 43, p.3877–3921 (1991)

    Article  ADS  Google Scholar 

  754. {Sect. 5.9.2} P. Yeh: Exact solution of a nonlinear model of two-wave mixing in Kerr media, J. Opt. Soc. Am. B 3, p.747–750 (1986)

    Article  ADS  Google Scholar 

  755. {Sect. 5.9.2} B.S. Wherrett, A.L. Smirl, Th.F. Boggess: Theory of Degenerate Four-Wave Mixing in Picosecond Excitation-Probe Experiments, IEEE J. QE-19, p.680–689 (1983)

    Article  Google Scholar 

  756. {Sect. 5.9.2} P. Ye, Y.R. Shen: Transient four-wave mixing and coherent transient optical phenomena, Phys. Rev. A 25, p.2183–2199 (1982)

    Article  ADS  Google Scholar 

  757. {Sect. 5.9.2} J.-L. Oudar, Y.R. Shen: Nonlinear spectroscopy by multiresonant four-wave mixing, Phys. Rev. A 22, p.1141–1158 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  758. {Sect. 5.9.2} R.W. Hellwarth: Theory of phase conjugation by stimulated scattering in a waveguide, J. Opt. Soc. Am. 68, p. 1050–1056 (1978)

    Article  ADS  Google Scholar 

  759. {Sect. 5.9.2} T.K. Yee, T.K. Gustafson: Diagrammatic analysis of the density operator for nonlinear optical calculations: Pulsed and cw responses, Phys. Rev. A 18, p.1597–1617 (1978)

    Article  ADS  Google Scholar 

  760. {Sect. 5.9.2} Y. R. Shen: Principles of Nonlinear Optics, chapter 14 (John Wiley & Sons, Chichester, 1984)

    Google Scholar 

  761. {Sect. 5.9.2} M. Lobel, P.M. Petersen, P.M. Johansen: Physical origin of laser frequency scanning induced by photorefractive phase-conjugate feedback, J Opt Soc Am B Opt Physics 16, p.219–227 (1999)

    Article  ADS  Google Scholar 

  762. {Sect. 5.9.2} S. Hannemann, U. Hollenstein, E.J. van Duijn, W. Ubachs: Production of narrowband tunable extreme-ultraviolet radiation by noncollinear resonance-enhanced four-wave mixing, Optics Letters 30, p. 1494–1496 (2005)

    Article  ADS  Google Scholar 

  763. {Sect. 5.9.2} D.M. Pepper: Nonlinear optical phase conjugation, Opt. Eng. 21, p.156–183 (1982)

    ADS  Google Scholar 

  764. {Sect. 5.9.2} A. Yariv: Phase Conjugate Optics and Real-Time Holography, IEEE J. QE-14, p.650–660 (1978)

    Article  Google Scholar 

  765. {Sect. 5.9.2} M. Gower, D. Proch (ed.): Optical Phase Conjugation (Springer, Berlin, Heidelberg, New York, 1994)

    Google Scholar 

  766. {Sect. 5.9.2} J. I. Sakai: Phase Conjugate Optics (McGraw-Hill, New York, 1992)

    Google Scholar 

  767. {Sect. 5.9.2} B. Y. Zel’dovich, N. Pilipettshii: Principles in Phase Conjugation (Springer, Heidelberg, Berlin, New York, 1985)

    Google Scholar 

  768. {Sect. 5.9.2} Z.D. Xu, Y.F. Liu, Y. Xiang, J. Yang, S.J. You, W.L. She: Optical phase conjugation property in azo-doped nematic liquid-crystal film, Acta Phys Sin Chinese Ed 48, p.2283–2288 (1999)

    Google Scholar 

  769. {Sect. 5.9.2} A. Brignon, S. Senac, J.L. Ayral, J.P. Huignard: Rhodiumdoped barium titanate phase-conjugate mirror for an all-solidstate, high-repetition-rate, diode-pumped Nd:YAG master-oscillator power amplifier laser, Appl Opt 37, p.3990–3995 (1998)

    Article  ADS  Google Scholar 

  770. {Sect. 5.9.2} G.S. He, P.N. Prasad: Phase-conjugation property of onephoton pumped backward stimulated emission from a lasing medium, IEEE J QE-34, p.473–481 (1998)

    Article  Google Scholar 

  771. {Sect. 5.9.2} M. Lobel: Wavelength selectivity of the complex grating structure formed in a photorefractive phase conjugator, J Appl Phys 84, p.3483–3490 (1998)

    Article  ADS  Google Scholar 

  772. {Sect. 5.9.2} A. Miniewicz, S. Bartkiewicz, J. Parka: Optical phase conjugation in dye-doped nematic liquid crystal, Opt Commun 149, p.89–95 (1998)

    Article  ADS  Google Scholar 

  773. {Sect. 5.9.2} W.L. She, W.K. Lee: Crystal-air interface enhanced selfpumped phase conjugation in photorefractive crystals, Opt Commun 146, p.249–252 (1998)

    Article  ADS  Google Scholar 

  774. {Sect. 5.9.2} A. Brignon, J.P. Huignard, M.H. Garrett, I. Mnushkina: Selfpumped phase conjugation in rhodium-doped BaTiO3 with 1.06-mu m nanosecond pulses, Optics Letters 22, p.215–217 (1997)

    Article  ADS  Google Scholar 

  775. {Sect. 5.9.2} R. Gutierrezcastrejon, K.M. Hung, T.J. Hall: Spatial evolution of the phase in resonant degenerate four-wave mixing, Opt Commun 138, p.227–234 (1997)

    Article  ADS  Google Scholar 

  776. {Sect. 5.9.2} R.K. Mohan, C.K. Subramanian: Transient phase conjugation in dye-doped polymer saturable absorbers, Opt Commun 144, p.322–330 (1997)

    Article  ADS  Google Scholar 

  777. {Sect. 5.9.2} P.P. Vasilev, I.H. White: Phase-conjugation broad area twin-contact semiconductor laser, Appl Phys Lett 71, p.40–42 (1997)

    Article  ADS  Google Scholar 

  778. {Sect. 5.9.2} A. Costela, I. Garciamoreno: Degenerate four-wave mixing in phenylbenzimidazole proton-transfer laser dyes, Chem Phys Lett 249, p.373–380 (1996)

    Article  ADS  Google Scholar 

  779. {Sect. 5.9.2} R.P.M. Green, G.J. Crofts, M.J. Damzen: Novel method for double phase conjugation in gain media, Opt Commun 124, p.488–492 (1996)

    Article  ADS  Google Scholar 

  780. {Sect. 5.9.2} C. Medrano, M. Zgonik, P. Bernasconi, P. Gunter: Phase conjugation in optical communication links with photorefractive Fe:KNbO3, Opt Commun 128, p.177–184 (1996)

    Article  ADS  Google Scholar 

  781. {Sect. 5.9.2} Y. Yang, H. Fei, Z. Wei, Q. Yang, G. Shun, L. Han: Phase conjugation in methyl orange doped polyvinyl alcohol film by DFWM based on excited state absorption, Opt. Comm. 123 p. 189–194 (1996)

    Article  ADS  Google Scholar 

  782. {Sect. 5.9.2} S. Brulisauer, D. Fluck, C. Solcia, T. Pliska, P. Gunter: Non-destructive waveguide loss-measurement method using self-pumped phase conjugation for optimum end-fire coupling, Optics Letters 20, p. 1773–1775 (1995)

    Article  ADS  Google Scholar 

  783. {Sect. 5.9.2} G.R. Gray, D.H. Detienne, G.P. Agrawal: Mode locking in semiconductor lasers by phase-conjugate optical feedback, Optics Letters 20, p.1295–1297 (1995)

    Article  ADS  Google Scholar 

  784. {Sect. 5.9.2} S. Miyanaga, H. Ohtateme, K. Kawano, H. Fujiwara: Excited-state absorption and pump propagation effects on optical phase conjugation in a saturable absorber, J. Opt. Soc. Am. B 10, p.1069–1076 (1993)

    Article  ADS  Google Scholar 

  785. {Sect. 5.9.2} Ch. Egami, K. Nakagawa, H. Fujiwara: Efficient Optical Phase Conjugation in Methyl-Orange-Doped Polyvinyl Alcohol Film, Jpn. J. Appl. Phys. 31, p.2937–2940 (1992)

    Article  ADS  Google Scholar 

  786. {Sect. 5.9.2} S.S. Alimpiev, I.V. Mel’nikov, V.S. Nersisyan, S.M. Nikiforov, E.G. Sartakov: Phase conjugation of CO2 laser radiation in cryogenic liquids, Sov. J. Quantum Electron. 20, p.1507–1512 (1990)

    Article  ADS  Google Scholar 

  787. {Sect. 5.9.2} V.I. Bespalov, A.A. Betin, E.A. Zhukov, O.V. Mitropol’sky, N.Yu. Rusov: Phase Conjugation of CO2 Laser Radiation in a Medium with Thermal Nonlinearity, IEEE J. QE-25, p.360–367 (1989)

    Article  Google Scholar 

  788. {Sect. 5.9.2} Y. Tomita, R. Yahalom, A. Yariv: Phase shift and cross talk of a self-pumped phase-conjugate mirror, Opt. Comm. 73, p.413–418 (1989)

    Article  ADS  Google Scholar 

  789. {Sect. 5.9.2} I.M. Bel’dyugin, M.V. Zolotarev, S.E. Kireev, A.I. Odintsov: Copper vapor laser with a self-pumped wavefront-reversing mirror, Sov. J. Quantum Electron. 16, p.535–537 (1986)

    Article  ADS  Google Scholar 

  790. {Sect. 5.9.2} R.G. Caro, M.C. Gower: Phase conjugation of KrF laser radiation, Opt. Lett. 6, p.557–559 (1981)

    Article  ADS  Google Scholar 

  791. {Sect. 5.9.2} B.J. Feldman, R.A. Fisher, S.L. Shapiro: Ultraviolet phase conjugation, Opt. Lett. 6, p.84–86 (1981)

    Article  ADS  Google Scholar 

  792. {Sect. 5.9.2} R.W. Hellwarth: Generation of time-reversed wave fronts by nonlinear refraction, J. Opt. Soc. Am. 67, p.1–3 (1977)

    Article  ADS  Google Scholar 

  793. {Sect. 5.9.2} B.Ya. Zel’dovich, V.I. Popovicher, V.V. Ragul’skii, F.S. Faizullow: Connection between the wavefronts of the reflected and the exciting light in stimulated Mandel’shtam-Brillouin scattering, Sov. Phys. JETP 15, p.109–112 (1972)

    Google Scholar 

  794. {Sect. 5.9.2} H.C. Barr, S. J. Berwick, P. Mason: Six-wave forward scattering of short-pulse laser light at relativistic intensities, Phys Rev Lett 81, p.2910–2913 (1998)

    Article  ADS  Google Scholar 

  795. {Sect. 5.9.2} I.D. Hands, S.J. Lin, S.R. Meech, D.L. Andrews: A quantum electrodynamical treatment of second harmonic generation through phase conjugate six-wave mixing: Polarization analysis, J Chem Phys 109, p.10580–10586 (1998)

    Article  ADS  Google Scholar 

  796. {Sect. 5.9.2} J.N. Sweetser, J.L. Durant, R. Trebino: Ultrafast spectroscopy of high-lying excited states via eight-wave mixing, Opt Commun 150, p.180–184 (1998)

    Article  ADS  Google Scholar 

  797. {Sect. 5.9.2} A.B. Myers, R.M. Hochstrasser: Comparison of Four-Wave Mixing Techniques for Studying Orientational Relaxation, IEEE J. QE-22, p.1482–1492 (1986)

    Article  Google Scholar 

  798. {Sect. 5.9.2} M. Golombok, G.A. Kenney-Wallace, S.C. Wallace: Pulsed Laser Studies of Molecular Interactions and Reorientation of CS2 in Organic Liquids via Phase Conjugation, J. Phys. Chem. 89, p.5160–5167 (1985)

    Article  Google Scholar 

  799. {Sect. 5.9.2} H.C. Praddaude, D.W. Scudder, B. Lax: Coherent four-wave scattering in plasmas — application to plasma diagnostics, Appl. Phys. Lett. 35, p.766–768 (1979)

    Article  ADS  Google Scholar 

  800. {Sect. 5.9.2} L.A. Rahn, L.J. Zych, P.L. Mattern: Background-Free CARS Studies of Carbon Monoxide in a Flame, Opt. Comm. 30, p.249–252 (1979)

    Article  ADS  Google Scholar 

  801. {Sect. 5.9.2} T. Yajima, H. Souma, Y. Ishida: Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing. II. Experiment on dye solutions, Phys. Rev. A 17, p.324–334 (1978)

    Article  ADS  Google Scholar 

  802. {Sect. 5.9.2} R.T. Hodgson, P.P. Sorokin, J.J. Wynne: Tunable Coherent Vacuum-Ultraviolet Generation in Atomic Vapors, Phys. Rev. Lett. 32, p.343–346 (1974)

    Article  ADS  Google Scholar 

  803. {Sect. 5.9.3} J.H. Liu, V. Petrov, U. Griebner, F. Noack, H.J. Zhang, J.Y. Wang, M.H. Jiang: Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser, Opt Express 14, p. 12183–12187 (2006)

    Article  ADS  Google Scholar 

  804. {Sect. 5.9.3} J. Houlihan, D. Goulding, T. Busch, C. Masoller, G. Huyet: Experimental investigation of a bistable system in the presence of noise and delay — art. no. 050601, Phys Rev Lett 9205, p.601 (2004)

    Google Scholar 

  805. {Sect. 5.9.3} J.M. Oh, D.H. Lee: Strong optical bistability in a simple L-band tunable erbium-doped fiber ring laser, Ieee J Quantum Electron 40, p.374–377 (2004)

    Article  ADS  Google Scholar 

  806. {Sect. 5.9.3} M.A. Noginov, B.D. Lucas, M. Vondrova: Optical bistability in a Cr: LiSrGaF6 laser, J Opt Soc Am B Opt Physics 19, p.1999–2006 (2002)

    Article  ADS  Google Scholar 

  807. {Sect. 5.9.3} H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan, A.C. Gossard, A. Passner, W. Wiegmann: Optical bistability in semiconductors, Appl. Phys. Lett. 35, p.451–453 (1979)

    Article  ADS  Google Scholar 

  808. {Sect. 5.9.3} A. Kuditcher, M.P. Hehlen, C.M. Florea, K.W. Winick, S.C. Rand: Intrinsic bistability of luminescence and stimulated emission in Yb-and Tm-doped glass, Phys Rev Lett 84, p. 1898–1901 (2000)

    Article  ADS  Google Scholar 

  809. {Sect. 5.9.3} S. Coen, M. Haelterman: Competition between modulational instability and switching in optical bistability, Optics Letters 24, p.80–82 (1999)

    Article  ADS  Google Scholar 

  810. {Sect. 5.9.3} S. Coen, M. Tlidi, P. Emplit, M. Haelterman: Convection versus dispersion in optical bistability, Phys Rev Lett 83, p.2328–2331 (1999)

    Article  ADS  Google Scholar 

  811. {Sect. 5.9.3} Z.Z. Zhuang, Y.J. Kim, J.S. Patel: Bistable twisted nematic liquid-crystal optical switch, Appl Phys Lett 75, p.3008–3010 (1999)

    Article  ADS  Google Scholar 

  812. {Sect. 5.9.3} Y. Hong, K.A. Shore: Observation of optical bistability in a GaAlAs semiconductor laser under intermodal injection locking, Optics Letters 23, p.1689–1691 (1998)

    Article  ADS  Google Scholar 

  813. {Sect. 5.9.3} X.H. Lu, Y.X. Bai, S.Q. Li, T.J. Chen: Optical bistability and beam reshaping in nonlinear multilayered structures, Opt Commun 156, p.219–226 (1998)

    Article  ADS  Google Scholar 

  814. {Sect. 5.9.3} L.G. Luo, R.F. Peng, P.L. Chu: Optical bistability in a passive erbium-doped fibre ring resonator, Opt Commun 156, p.275–278 (1998)

    Article  ADS  Google Scholar 

  815. {Sect. 5.9.3} Y.M. Golubev, M.I. Kolobov: Noiseless transfer of nonclassical light through bistable systems, Phys Rev Lett 79, p.399–402 (1997)

    Article  ADS  Google Scholar 

  816. {Sect. 5.9.3} K. Hane, M. Suzuki: Bistability of a self-standing film caused by photothermal displacement, Appl Opt 36, p.5006–5009 (1997)

    Article  ADS  Google Scholar 

  817. {Sect. 5.9.3} L.L. Li: Optical bistability in semiconductor lasers under intermodal light injection, IEEE J QE-32, p.248–256 (1996)

    Google Scholar 

  818. {Sect. 5.9.3} M. Okada, K. Nishio: Bistability and optical switching in a polarization-bistable laser diode, IEEE J QE-32, p.1767–1776 (1996)

    Article  Google Scholar 

  819. {Sect. 5.9.3} J.H. Si, Y.G. Wang, J. Zhao, B.S. Zou, P.X. Ye, L. Qui, Y.Q. Shen, Z.G. Cai, J.Y. Zhou: Picosecond optical bistability in metallophthalo-cyanine-doped polymer film waveguides, Optics Letters 21, p.357–359 (1996)

    Article  ADS  Google Scholar 

  820. {Sect. 5.9.3} H.J. Eichler, A. Haase, K. Janiak, A. Kummrow, A. Wahi, A. Wappelt: Absorption bistability and nonlinearity in evaporated thin films, Opt. Comm. 88, p.298–304 (1992)

    Article  ADS  Google Scholar 

  821. {Sect. 5.9.3} R. Bonifacio, L.A. Lugiato: Dispersive Bistability in Homogeneously Broadened Systems, Nuovo Cimento B 53, p.311–333 (1979)

    Article  ADS  Google Scholar 

  822. {Sect. 5.9.3} J.G. Chen, D.Y. Li, Y. Li, Y. Lu, X.H. Zhou: Analytical expression for the hysteresis loop width of bistable tunable external cavity semiconductor lasers, Appl Opt 38, p.6333–6336 (1999)

    Article  ADS  Google Scholar 

  823. {Sect. 5.9.3} M.P. Hehlen, A. Kuditcher, S.C. Rand, S.R. Luthi: Site-selective, intrinsically bistable luminescence of Yb3+ ion pairs in CsCdBr3, Phys Rev Lett 82, p.3050–3053 (1999)

    Article  ADS  Google Scholar 

  824. {Sect. 5.9.3} I. Towers, R. Sammut, A.V. Buryak, B.A. Malomed: Soliton multistability as a result of double-resonance wave mixing in chi ((2)) media, Optics Letters 24, p.1738–1740 (1999)

    Article  ADS  Google Scholar 

  825. {Sect. 5.9.3} L.G. Luo, T.J. Tee, P.L. Chu: Bistability of erbium-doped fiber laser, Opt Commun 146, p.151–157 (1998)

    Article  ADS  Google Scholar 

  826. {Sect. 5.9.3} D.B. Shire, C.L. Tang, M.A. Parker, C. Lei, L. Hodge: Bistable operation of coupled in-plane and oxide-confined vertical-cavity laser 1xN routing switches, Appl Phys Lett 71, p.3039–3041 (1997)

    Article  ADS  Google Scholar 

  827. {Sect. 5.9.3} B.M. Jost: Photorefractive two-wave mixing bistability in Fe:KNbO3 without external feedback: Increasing gain bistability, Appl Phys Lett 69, p.1346–1348 (1996)

    Article  ADS  Google Scholar 

  828. {Sect. 5.10.1} T. Kobayashi, T. Saito, H. Ohtani: Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization, Nature 414, p.531–534 (2001)

    Article  ADS  Google Scholar 

  829. {Sect. 5.10.1} L.D. Li, H. Mohwald, C. Spitz, D. vonSeggern, M. Mucke, R. Menzel: Long-lived photoinduced charge separation inside polarity gradient capsules, Advan Mater 17, p.2247–2249 (2005)

    Article  Google Scholar 

  830. {Sect. 5.10.1} B.L. Yao, M. Lei, L.Y. Ren, N. Menke, Y.L. Wang, T. Fischer, N. Hampp: Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films, Optics Letters 30, p.3060–3062 (2005)

    Article  ADS  Google Scholar 

  831. {Sect. 5.10.1.1} I. B. Berlmann: Handbook of Flourescence Spectra of Aromatic Molecules (Academic Press, New York, London, 1971)

    Google Scholar 

  832. {Sect. 5.10.1.1} B.R. Henry, W. Siebrand: Radiationless Transitions, in Organic Molecular Photophysics, ed. J.B. Birks, Vol. 1, Wiley, London 1973, p. 153

    Google Scholar 

  833. {Sect. 5.10.1.1} H. S. Nalwa, S. Miyata: Nonlinear Optics of Organic Molecules and Polymeric Materials (Springer, Berlin, Heidelberg, New York, 1996)

    Google Scholar 

  834. {Sect. 5.10.1.1} P. N. Prasad, D. Williams: Introduction to Nonlinear Optical Effects in Molecules and Polymers (John Wiley & Sons, Chichester, 1991)

    Google Scholar 

  835. {Sect. 5.10.1.1} J. Saltiel, J.L. Charlton: Rearrangement in Ground and Excited States, ed. by P. DeMeyo (Academic, New York 1980) Vol. III, p.25

    Google Scholar 

  836. {Sect. 5.10.1.1} J. Zyss: Molecular Nonlinear Optics (Academic Press, Boston, 1994)

    Google Scholar 

  837. {Sect. 5.10.1.1} R. Menzel, K.-H. Naumann: Towards a Theoretical Description of UV-Vis Absorption Bands of Organic Molecules, Ber. Bunsenges. Phys. Chem. 95, p.834–837 (1991)

    Google Scholar 

  838. {Sect. 5.10.1.1} W. Sibbett, J.R. Taylor, D. Welford: Substituent and Environmental Effects on the Picosecond Lifetimes of the Polymethine Cyanine Dyes, IEEE J. QE-17, p.500–509 (1981)

    Article  Google Scholar 

  839. {Sect. 5.10.1.1} G. Swiatkowski, R. Menzel, W. Rapp: Hindrance of the Rotational Relaxation in the Excited Singlet State of Biphenyl and Para-Terphenyl in Cooled Solutions by Methyl Substituents, J. Luminesc. 37, p.183–189 (1987)

    Article  Google Scholar 

  840. {Sect. 5.10.1.1} V. Sundström, T. Gillbro, H. Bergström: Picosecond Kinetics of Radiationless Relaxations of Triphenyl Methane Dyes. Evidence for a Rapid Excited-State Equilibrium Between States of Differing Geometry, Chem. Phys. 73, p.439–458 (1982)

    Article  Google Scholar 

  841. {Sect. 5.10.1.1} S. Reindl, A. Penzkofer: Higher excited-state photoisomerization and singlet to triplet intersystem-crossing in DODCI, Chem Phys 230, p.83–96 (1998)

    Article  Google Scholar 

  842. {Sect. 5.10.1.1} F. Gai, K.C. Hasson, J.C. McDonald, P.A. Anfinrud: Chemical dynamics in proteins: The photoisomerization of retinal in bacteriorhodopsin, Science 279, p. 1886–1891 (1998)

    Article  ADS  Google Scholar 

  843. {Sect. 5.10.1.1} T. Nagele, R. Hoche, W. Zinth, J. Wachtveitl: Femtosecond photoisomerization of cis-azobenzene, Chem Phys Lett 272, p.489–495 (1997)

    Article  ADS  Google Scholar 

  844. {Sect. 5.10.1.1} N.C.R. Holme, P.S. Ramanujam, S. Hvilsted: 10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester, Optics Letters 21, p.902–904 (1996)

    Article  ADS  Google Scholar 

  845. {Sect. 5.10.1.1} C. Desfrancois, H. Abdoulcarime, C.P. Schulz, J.P. Schermann: Laser separation of geometrical isomers of weakly bound molecular complexes, Science 269, p.1707–1709 (1995)

    Article  ADS  Google Scholar 

  846. {Sect. 5.10.1.1} J. Troe: Quantitative analysis of photoisomerization rates in trans-stilbene and 4-methyl-trans-stilbene, Chem. Phys. Lett. 114, p.241–247 (1985)

    Article  ADS  Google Scholar 

  847. {Sect. 5.10.1.1} F.E. Doany, E.J. Heilweil, R. Moore, R.M. Hochstrasser: Picosecond study of an intermediate in the trans to cis isomerization pathway of stiff stilbene, J. Chem. Phys. 80, p.201–206 (1984)

    Article  ADS  Google Scholar 

  848. {Sect. 5.10.1.1} B.I. Greene, T.W. Scott: Time-resolved multiphoton ionization in the organic condensed phase: picosecond conformational dynamics of cis-stilbene and tetraphenylethylene, Chem. Phys. Lett. 106, p.399–402 (1984)

    Article  ADS  Google Scholar 

  849. {Sect. 5.10.1.1} T.J. Majors, U. Even, J. Jortner: Dynamics of trans-cis photoisomerization of large molecules in supersonic jets, J. Chem. Phys. 81, p.2330–2338 (1984)

    Article  ADS  Google Scholar 

  850. {Sect. 5.10.1.1} V. Sundstrom, T. Gillbro: Dynamics of the isomerization of trans-stilbene in n-alcohols studied by ultraviolet picosecond absorption recovery, Chem. Phys. Lett. 109, p.538–543 (1984)

    Article  ADS  Google Scholar 

  851. {Sect. 5.10.1.1} J.A. Syage, P.M. Felker, A.H. Zewail: Picosecond dynamics and photoisomerization of stilbene in supersonic beams. II. Reaction rates and potential energy surface, J. Chem. Phys. 81, p.4706–4723 (1984)

    Article  ADS  Google Scholar 

  852. {Sect. 5.10.1.1} D.A. Cremers, T.L. Cremers: Picosecond Dynamics of Conformation Changes in Malachite Green Dye Produced by Photoinonization of Malachite Green Leucocyanide, Chem. Phys. Lett. 94, p.102–106 (1983)

    Article  ADS  Google Scholar 

  853. {Sect. 5.10.1.1} B.I. Greene, R.C. Farrow: Subpicosecond time resolved multiphoton ionization: Excited state dynamics of cis-stilbene under collision free conditions, J. Chem. Phys. 78, p.3336–3338 (1983)

    Article  ADS  Google Scholar 

  854. {Sect. 5.10.1.1} M. Sumitani, K. Yoshihara: Direct Observation of the Rate for Cis-Trans and Trans-Cis Photoisomerization of Stilbene with Picosecond Laser Photolysis, Bull. Chem. Soc. Japan 55, p.85–89 (1982)

    Article  Google Scholar 

  855. {Sect. 5.10.1.1} J.A. Syage, W.R. Lambert, P.M. Felker, A.H. Zewail, R.M. Hochstrasser: Picosecond excitation and trans-cis isomerization of stilbene in a supersonic jet: dynamics and spectra, Chem. Phys. Lett. 88, p.266–270 (1982)

    Article  ADS  Google Scholar 

  856. {Sect. 5.10.1.1} F.E. Doany, B.I. Greene, R.M. Hochstrasser: Excitation energy effects in the photophysics of trans-stilbene in solution, Chem. Phys. Lett. 75, p.206–208 (1980)

    Article  ADS  Google Scholar 

  857. {Sect. 5.10.1.1} B.I. Greene, R.M. Hochstrasser, R. Weisman: Picosecond dynamics of the photoisomerization of trans-stilbene under collision-free conditions, J. Chem. Phys. 71, p.544–545 (1979)

    Article  ADS  Google Scholar 

  858. {Sect. 5.10.1.1} K. Yoshihara, A. Namiki, M. Sumitani, N. Nakashima: Picosecond flash photolysis of cis-and trans-stilbene. Observation of an intense intramolecular charge-resonance transition, J. Chem. Phys. 71, p.2892–2895 (1979)

    Article  ADS  Google Scholar 

  859. {Sect. 5.10.1.2} J.B. Birks: Horizontal radiationless transitions, Chem. Phys. Lett. 54, p.430–434 (1978)

    Article  ADS  Google Scholar 

  860. {Sect. 5.10.1.1} M. Sumitani, N. Nakashima, K. Yoshihara, S. Nagakura: Temperature Dependence of fluorescence lifetimes of trans-stilbene, Chem. Phys. Lett. 51, p.183–185 (1977)

    Article  ADS  Google Scholar 

  861. {Sect. 5.10.1.1} O. Teschke, E.P. Ippen, G.R. Holtom: Picosecond dynamics of the singlet excited state of trans-and cis-stilbene, Chem. Phys. Lett. 52, p.233–235 (1977)

    Article  ADS  Google Scholar 

  862. {Sect. 5.10.1.1} F. Schael, H.G. Lohmannsroben: The deactivation of singlet excited all-trans-1,6-diphenylhexa-1,3,5-triene by intermolecular charge transfer processes. 1. Mechanisms of fluorescence quenching and of triplet and cation formation, Chem Phys 206, p.193–210 (1996)

    Article  Google Scholar 

  863. {Sect. 5.10.1.1} R.A. Marcus: Elektronentransferrreaktionen in der Chemie — Theorie und Experiment (Nobel-Vortrag), Angew. Chem. 105, p.1161–1280 (1993)

    Article  Google Scholar 

  864. {Sect. 5.10.1.1} H. Lueck, M.W. Windsor, W. Rettig: Picosecond kinetic studies of charge separation in 9,9′-bianthryl as a function of solvent viscosity and comparisions with electron transfer in bacterial photosynthesis, J. Luminesc. 48 & 49, p.425–429 (1991)

    Article  Google Scholar 

  865. {Sect. 5.10.1.1} E. Gilabert, R. Lapouyade, C. Rullière: Dual fluorescence in trans-4-dimethylamino-4′-cyanostilbene revealed by picosecond time-resolved spectroscopy: A possible new ”TICT” compound, Chem. Phys. Lett. 145, p.262–268 (1988)

    Article  ADS  Google Scholar 

  866. {Sect. 5.10.1.1} D. Huppert, V. Ittah, E. M. Kosower: New insights into the mechanism of fast intramolecular electron transfer, Chem. Phys. Lett. 144, p.15–23 (1988)

    Article  ADS  Google Scholar 

  867. {Sect. 5.10.1.1} K. Nakatani, T. Okada, N. Mataga, F.C. de Schryver, M. van der Auweraer: Picosecond time-resolved transient absorption spectral studies of omega-(1-pyrenyl)-alpha-N,N-dimethylaminoalkanes in acetonitrile, Chem. Phys. Lett. 145, p.81–84 (1988)

    Article  ADS  Google Scholar 

  868. {Sect. 5.10.1.1} K. Nakatani, T. Okada, N. Mataga, F.C. de Schryver: Photoinduced intramolecular electron transfer and exciplex formation of 1-(1-pyrenyl)-3-(N-skatolyl)propane in polar solvents, Chem. Phys. 121, p.87–92 (1988)

    Article  Google Scholar 

  869. {Sect. 5.10.1.1} M. Vogel, W. Rettig, R. Sens, K.H. Drexhage: Evidence for the formation of biradicaloid charge-transfer (BCT) states in xanthene and related dyes, Chem. Phys. Lett. 147, p.461–465 (1988)

    Article  ADS  Google Scholar 

  870. {Sect. 5.10.1.1} R. Hayashi, S. Tazuke: Pressure effects on the twisted intramolecular charge transfer (TICT) phenomenon, Chem. Phys. Lett. 135, p.123–127 (1987)

    Article  ADS  Google Scholar 

  871. {Sect. 5.10.1.1} T. Kakitani, N. Mataga: Comprehensive Study on the Role of Coordinated Solvent Mode Played in Electron-Transfer Reactions in Polar Solutions, J. Phys. Chem. 91, p.6277–6285 (1987)

    Article  Google Scholar 

  872. {Sect. 5.10.1.1} T. Kobayashi, M. Futakami, O. Kajimoto: The charge-transfer state of 4-dimethylamino-3,5-dimethylbenzonitrile studied in a free jet, Chem. Phys. Lett. 141p.450–454 (1987)

    Article  ADS  Google Scholar 

  873. {Sect. 5.10.1.1} E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel, J.A. Miehé: Photophysics of internal twisting, Adv. Chem. Phys, p.76–139 (1987)

    Google Scholar 

  874. {Sect. 5.10.1.1} N. Mataga, H. Shioyama, Y. Kanda: Dynamics of Charge Recombination Processes in the Singlet Electron-Transfer State of Pyrene-Pyromellitic Dianhydride Systems in Various Solvents. Picosecond Laser Photolysis Studies, J. Phys. Chem. 91, p.314–317 (1987)

    Article  Google Scholar 

  875. {Sect. 5.10.1.1} T. Ohno, A. Yoshimura, H. Shioyama, N. Mataga: Energy Gap Dependence of Spin-Inverted Electron Transfer within Geminate Radical Pairs Formed by the Quenching of Phosphorescent States in Polar Solvents, J. Phys. Chem. 91, p.4365–4370 (1987)

    Article  Google Scholar 

  876. {Sect. 5.10.1.1} T. Kakitani, N. Mataga: Different Energy Gap Laws for the Three Types of Electron-Transfer Reactions in Polar Solvents, J. Phys. Chem. 90, p.993–995 (1986)

    Article  Google Scholar 

  877. {Sect. 5.10.1.1} N. Mataga, Y. Kanda, T. Okada: Dynamics of Aromatic Hydrocarbon Cation-Tetracyanoethylene Anion Geminate Ion Pairs in Acetonitrile Solution with Implications to the Mechanism of the Strongly Exothermic Charge Separation Reaction in the Excited Singlet State, J. Phys. Chem. 90, p.3880–3882 (1986)

    Article  Google Scholar 

  878. {Sect. 5.10.1.1} T. Ohno, A. Yoshimura, N. Mataga: Bell-Shaped Energy Gap Dependence of Backward Electron-Transfer Rate of Geminate Radical Pairs Produced by Electron-Transfer Quenching of Ru (II) Complexes by Aromatic Amines, J. Phys. Chem. 90, p.3295–3297 (1986)

    Article  Google Scholar 

  879. {Sect. 5.10.1.1} W. Rettig, A. Klock: Intramolecular fluorescence quenching in aminocoumarines. Identification of an excited state with full charge separation, Can. J. Chem. 63, p.1649–1653 (1985)

    Article  Google Scholar 

  880. {Sect. 5.10.1.1} N. Mataga: Photochemical charge transfer phenomena — picosecond laser photolysis studies, Pure & Appl. Chem. 56, p.1255–1268 (1984)

    Article  Google Scholar 

  881. {Sect. 5.10.1.1} Y. Wang, M. McAuliffe, K.B. Eisenthal: Picosecond Dynamics of Twisted Internal Charge-Transfer Phenomena, J. Phys. Chem. 85, p.3736–3739 (1981)

    Article  Google Scholar 

  882. {Sect. 5.10.1.1} W. Rapp: Classical treatment on intramolecular twisting relaxations of dissolved molecules, Chem. Phys. Lett. 27, p.187–190 (1974)

    Article  ADS  Google Scholar 

  883. {Sect. 5.10.1.1} R.A. Marcus: On the Theory of Electron-Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions, J. Chem. Phys. 43, p.679–701 (1965)

    Article  ADS  Google Scholar 

  884. {Sect. 5.10.1.1} R.A. Marcus: Chemical and electrochemical electron-transfer theory, Annu. Rev. Phys. Chem. 15, p. 155–196 (1964)

    Article  ADS  Google Scholar 

  885. {Sect. 5.10.1.1} R.A. Marcus: On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I, J. Chem. Phys. 24, p.966–978 (1956)

    Article  ADS  Google Scholar 

  886. {Sect. 5.10.1.1} J.R. Bolton, N. Mataga, Mc. Lendon (ed.): Electron Transfer in Inorganic, Organic, and Biological Systems, Adv. in Chem. Ser. 228 (Am Chem. Soc.1991)

    Google Scholar 

  887. {Sect. 5.10.1.1} M.A. Fox, M. Channon (ed.): Photoinduced Electron Transfer, Part A–D (Elsevier 1988)

    Google Scholar 

  888. {Sect. 5.10.1.2} M.N. Slyadnev, T. Inoue, A. Harata, T. Ogawa: A rhodamine and a cyanine dye on the water surface as studied by laser induced fluorescence microscopy, Colloid Surface A 164, p. 155–162 (2000)

    Article  Google Scholar 

  889. {Sect. 5.10.1.2} A. Imhof, M. Megens, J.J. Engelberts, D.T.N. deLang, R. Sprik, W.L. Vos: Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres, J Phys Chem B 103, p.1408–1415 (1999)

    Article  Google Scholar 

  890. {Sect. 5.10.1.2} K. Kitaoka, J. Si, T. Mitsuyu, K. Hirao: Optical poling of azo-dye-doped thin films using an ultrashort pulse laser, Appl Phys Lett 75, p.157–159 (1999)

    Article  ADS  Google Scholar 

  891. {Sect. 5.10.1.2} C.S. Wang, H.S. Fei, Y.Q. Yang, Z.Q. Wei, Y. Qiu, Y.M. Chen: Photoinduced anisotropy and polarization holography in azobenzene side-chain polymer, Opt Commun 159, p.58–62 (1999)

    Article  ADS  Google Scholar 

  892. {Sect. 5.10.1.2} S. Walheim, E. Schaffer, J. Mlynek, U. Steiner: Nanophase-separated polymer films as high-performance antireflection coatings, Science 283, p.520–522 (1999)

    Article  ADS  Google Scholar 

  893. {Sect. 5.10.1.2} L.M. Blinov, G. Cipparrone, S.P. Palto: Phase grating recording on photosensitive Langmuir-Blodgett films, J Nonlinear Opt Physics Mat 7, p.369–383 (1998)

    Article  ADS  Google Scholar 

  894. {Sect. 5.10.1.2} D.J. Welker, J. Tostenrude, D.W. Garvey, B.K. Canfield, M.G. Kuzyk: Fabrication and characterization of single-mode electro-optic polymer optical fiber, Optics Letters 23, p.1826–1828 (1998)

    Article  ADS  Google Scholar 

  895. {Sect. 5.10.1.2} K.T. Weitzel, U.P. Wild, V.N. Mikhailov, V.N. Krylov: Hologram recording in DuPont photopolymer films by use of pulse exposure, Optics Letters 22, p.1899–1901 (1997)

    Article  ADS  Google Scholar 

  896. {Sect. 5.10.1.2} D. Gu, Q. Chen, X. Tang, F. Gan, S. Shen, K. Liu, H. Xu: Application of phtalocyanine thin films in optical recording, Opt. Comm. 121, p.125–129 (1995)

    Article  ADS  Google Scholar 

  897. {Sect. 5.10.1.2} J.R. Kulisch, H. Franke, R. Irmscher, Ch. Buchal: Opto-optical switching in ion-implanted poly (methyl methacrylate)-waveguides, J. Appl. Phys. 71, p.3123–3126 (1992)

    Article  ADS  Google Scholar 

  898. {Sect. 5.10.1.2} E. Gross, B. Ehrenberg: The partition and distribution of porphyrins in liposomal membranes. A spectroscopic study, Biochim. Biophys. Acta 983, p.118–122 (1989)

    Article  Google Scholar 

  899. {Sect. 5.10.1.2} V. Tsukanova, A. Harata, T. Ogawa: Orientational arrangement of long-chain fluorescein molecules within the monolayer at the air/water interface studied by the SHG technique, Langmuir 16, p.1167–1171 (2000)

    Article  Google Scholar 

  900. {Sect. 5.10.1.2} L. Xu, Z.J. Hou, L.Y. Liu, Z.L. Xu, W.C. Wang, F.M. Li, M.X. Ye: Optical nonlinearity and structural phase-transition observation of organic dye-doped polymer-silica hybrid material, Optics Letters 24, p.1364–1366 (1999)

    Article  ADS  Google Scholar 

  901. {Sect. 5.10.1.2} R.J. Kruhlak, M.G. Kuzyk: Side-illumination fluorescence spectroscopy. I. Principles, J Opt Soc Am B Opt Physics 16, p.1749–1755 (1999)

    Article  ADS  Google Scholar 

  902. {Sect. 5.10.1.2} R.J. Kruhlak, M.G. Kuzyk: Side-illumination fluorescence spectroscopy. II. Applications to squaraine-dye-doped polymer optical fibers, J Opt Soc Am B Opt Physics 16, p.1756–1767 (1999)

    Article  ADS  Google Scholar 

  903. {Sect. 5.10.1.2} Y. Takeoka, A.N. Berker, R. Du, T. Enoki, A. Grosberg, M. Kardar, T. Oya, K. Tanaka, G.Q. Wang, X.H. Yu et al.: First order phase transition and evidence for frustrations in polyampholytic gels, Phys Rev Lett 82, p.4863–4865 (1999)

    Article  ADS  Google Scholar 

  904. {Sect. 5.10.1.2} A. Hoischen, H.S. Kitzerow, K. Kurschner, P. Strohriegl: Optical storage effect due to photopolymerization of mesogenic twin molecules, J Appl Phys 87, p.2105–2109 (2000)

    Article  ADS  Google Scholar 

  905. {Sect. 5.10.1.2} C.J. Brabec, F. Padinger, N.S. Sariciftci, J.C. Hummelen: Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix, J Appl Phys 85, p.6866–6872 (1999)

    Article  ADS  Google Scholar 

  906. {Sect. 5.10.1.2} A.Y.G. Full, M.S. Tsai, L.J. Huang, T.C. Liu: Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye, Appl Phys Lett 74, p.2572–2574 (1999)

    Article  ADS  Google Scholar 

  907. {Sect. 5.10.1.2} W. Holzer, M. Pichlmaier, E. Drotleff, A. Penzkofer, D.D.C. Bradley, W.J. Blau: Optical constants measurement of luminescent polymer films, Opt Commun 163, p.24–28 (1999)

    Article  ADS  Google Scholar 

  908. {Sect. 5.10.1.2} O.V. Khodykin, S.J. Zilker, D. Haarer, B.M. Kharlamov: Zinc-tetrabenzoporphyrine-doped poly (Methyl methacrylate): a new photochromic recording medium, Optics Letters 24, p.513–515 (1999)

    Article  ADS  Google Scholar 

  909. {Sect. 5.10.1.2} J.S. Kim, R.H. Friend, F. Cacialli: Improved operational stability of polyfluorene-based organic light-emitting diodes with plasma-treated indium-tin-oxide anodes, Appl Phys Lett 74, p.3084–3086 (1999)

    Article  ADS  Google Scholar 

  910. {Sect. 5.10.1.2} H. Murata, C.D. Merritt, H. Inada, Y. Shirota, Z.H. Kafafi: Molecular organic light-emitting diodes with temperature-independent quantum efficiency and improved thermal durability, Appl Phys Lett 75, p.3252–3254 (1999)

    Article  ADS  Google Scholar 

  911. {Sect. 5.10.1.2} S. Pelissier, D. Blanc, M.P. Andrews, S.I. Najafi, A.V. Tishchenko, O. Parriaux: Single-step UV recording of sinusoidal surface gratings in hybrid solgel glasses, Appl Opt 38, p.6744–6748 (1999)

    Article  ADS  Google Scholar 

  912. {Sect. 5.10.1.2} G. Rojo, G. delaTorre, J. GarciaRuiz, I. Ledoux, T. Torres, J. Zyss, F. AgulloLopez: Novel unsymmetrically substituted push-pull phthalocyanines for second-order nonlinear optics, Chem Phys 245, p.27–34 (1999)

    Article  Google Scholar 

  913. {Sect. 5.10.1.2} M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Patel, P. Wiltzius: Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium, Optics Letters 24, p.658–660 (1999)

    Article  ADS  Google Scholar 

  914. {Sect. 5.10.1.2} A. Shukla, S. Mazumdar: Designing emissive conjugated polymers with small optical gaps: A step towards organic polymeric infrared lasers, Phys Rev Lett 83, p.3944–3947 (1999)

    Article  ADS  Google Scholar 

  915. {Sect. 5.10.1.2} W.L. Yu, Y. Cao, J.A. Pei, W. Huang, A.J. Heeger: Blue polymer light-emitting diodes from poly (9,9-dihexylfmorene-alt-co-2,5-di-decyloxy-para-phenylene), Appl Phys Lett 75, p.3270–3272 (1999)

    Article  ADS  Google Scholar 

  916. {Sect. 5.10.1.2} P.K.H. Ho, D.S. Thomas, R.H. Friend, N. Tessler: All-polymer optoelectronic devices, Science 285, p.233–236 (1999)

    Article  Google Scholar 

  917. {Sect. 5.10.1.2} S. Walheim, E. Schaffer, J. Mlynek, U. Steiner: Nanophase-separated polymer films as high-performance antireflection coatings, Science 283, p.520–522 (1999)

    Article  ADS  Google Scholar 

  918. {Sect. 5.10.1.2} L.L. Hu, Z.H. Jiang: Laser action in rhodamine 6G doped titania-containing ormosils, Opt Commun 148, p.275–280 (1998)

    Article  ADS  Google Scholar 

  919. {Sect. 5.10.1.2} H. Kietzmann, R. Rochow, G. Gantefor, W. Eberhardt, K. Vietze, G. Seifert, P.W. Fowler: Electronic structure of small fullerenes: Evidence for the high stability of C-32, Phys Rev Lett 81, p.5378–5381 (1998)

    Article  ADS  Google Scholar 

  920. {Sect. 5.10.1.2} S.K. Lam, D. Lo: Delayed luminescence spectroscopy and optical phase conjugation in eosin Y-doped sol-gel silica glasses, Chem Phys Lett 297, p.329–334 (1998)

    Article  ADS  Google Scholar 

  921. {Sect. 5.10.1.2} E.I. Maltsev, D.A. Lypenko, B.I. Shapiro, M.A. Brusentseva, V.I. Berendyaev, B.V. Kotov, A.V. Vannikov: J-aggregate electroluminescence in dye doped polymer layers, Appl Phys Lett 73, p.3641–3643 (1998)

    Article  ADS  Google Scholar 

  922. {Sect. 5.10.1.2} J.H. Si, T. Mitsuyu, P.X. Ye, Z. Li, Y.Q. Shen, K. Hirao: Optical storage in an azobenzene-polyimide film with high glass transition temperature, Opt Commun 147, p.313–316 (1998)

    Article  ADS  Google Scholar 

  923. {Sect. 5.10.1.2} K. Kandasamy, P.N. Puntambekar, B.P. Singh, S.J. Shetty, T.S. Srivastava: Resonant nonlinear optical studies on porphyrin derivatives, J Nonlinear Opt Physics Mat 6, p.361–375 (1997)

    Article  ADS  Google Scholar 

  924. {Sect. 5.10.1.2} X.A. Long, A. Malinowski, D.D.C. Bradley, M. Inbasekaran, E.P. Woo: Emission processes in conjugated polymer solutions and thin films, Chem Phys Lett 272, p.6–12 (1997)

    Article  ADS  Google Scholar 

  925. {Sect. 5.10.1.2} E.S. Maniloff, D. Vacar, D.W. Mcbranch, H.L. Wang, B.R. Mattes, J. Gao, A.J. Heeger: Ultrafast holography using charge-transfer polymers, Opt Commun 141, p.243–246 (1997)

    Article  ADS  Google Scholar 

  926. {Sect. 5.10.1.2} S. Ozcelik, D.L. Akins: Extremely low excitation threshold, superradiant, molecular aggregate lasing system, Appl Phys Lett 71, p.3057–3059 (1997)

    Article  ADS  Google Scholar 

  927. {Sect. 5.10.1.2} M. Ahlheim, M. Barzoukas, P.V. Bedworth, M. Blancharddesce, A. Fort, Z.Y. Hu, S.R. Marder, J.W. Perry, C. Runser, M. Staehelin, et al.: Chromophores with strong heterocyclic accepters: A poled polymer with a large electro-optic coefficient, Science 271, p.335–337 (1996)

    Article  ADS  Google Scholar 

  928. {Sect. 5.10.1.2} F. Hide, M.A. Diazgarcia, B.J. Schwartz, M.R. Andersson, Q.B. Pei, A.J. Heeger: Semiconducting polymers: A new class of solid-state laser materials, Science 273, p.1833–1836 (1996)

    Article  ADS  Google Scholar 

  929. {Sect. 5.10.1.2} H.S. Fei, Z.Q. Wei, Q.G. Yang, Y.L. Che, Y.Q. Shen, X.F. Fu, L. Qiu: Low power phase conjugation in push pull azobenzene compounds, Optics Letters 20, p. 1518–1520 (1995)

    Article  ADS  Google Scholar 

  930. {Sect. 5.10.1.2} Y.C. Liu, H.Y. Wang, M.Z. Tian, Y.L. Lin, X.G. Kong, S.H. Huang, J.Q. Yu: Multiple-hologram storage for thin layers of Methyl Orange dyes in polyvinyl alcohol matrices, Optics Letters 20, p.1495–1497 (1995)

    Article  ADS  Google Scholar 

  931. {Sect. 5.10.1.2} Y.H. Zhang, Q.W. Song, C. Tseronis, R.R. Birge: Real-time holographic imaging with a bacteriorhodopsin film, Optics Letters 20, p.2429–2431 (1995)

    Article  ADS  Google Scholar 

  932. {Sect. 5.10.1.2} F.E. Doany, E.J. Heilweil, R. Moore, R.M. Hochstrasser: Picosecond study of an intermediate in the trans to cis isomerization pathway of stiff stilbene, J. Chem. Phys. 80, p.201–206 (1984)

    Article  ADS  Google Scholar 

  933. {Sect. 5.10.1.2} Y. Maeda, T. Okada, N. Mataga: Photoinduced Trans-Cis Isomerization and Intramolecular-Charge-Transfer Interaction. Photochemistry and Picosecond Laser Spectroscopy of 4-Substituted beta-(1-Pyrenyl)styrenes, J. Phys. Chem. 88, p.2714–2718 (1984)

    Article  Google Scholar 

  934. {Sect. 5.10.1.2} V. Sundström, T. Gillbro: Dynamics of the isomerization of trans-stilbene in n-alcohols studied by ultraviolet picosecond absorption recovery, Chem. Phys. Lett. 109, p.538–543 (1984)

    Article  ADS  Google Scholar 

  935. {Sect. 5.10.1.2} A. Amirav, J. Jortner: Dynamics of trans-cis isomerization of stilbene in supersonic jets, Chem. Phys. Lett. 95, p.295–300 (1983)

    Article  ADS  Google Scholar 

  936. {Sect. 5.10.1.2} H. Görner, D. Schult-Frohlinde: Trans-cis photoisomerization of the quaternary iodides of 4-cyano-and 4-nitro-4′-azastilbene in ethanol solution: Singlet versus triplet mechanism, Chem. Phys. Lett. 101, p.79–85 (1983)

    Article  ADS  Google Scholar 

  937. {Sect. 5.10.1.2} K.S. Schanze, T. Fleming Mattox, D.G. Whitten: Solvent Effects upon the Thermal Cis-Trans Isomerization and Charge-Transfer Absorption of 4-(Diethylamino)-4′-nitroazobenzene, J. Org. Chem. 48, p.2808–2813 (1983)

    Article  Google Scholar 

  938. {Sect. 5.10.1.2} G. Bartocci, F. Masetti, U. Mazzucato, S. Dellonte, G. Orlandi: Photophysical study of rotational isomers of mono-aza-and di-aza-stilbenes, Spectrochimica Acta 38A, p.729–735 (1982)

    ADS  Google Scholar 

  939. {Sect. 5.10.1.2} M. Sumitani, K. Yoshihara: Photochemistry of the lowest excited singlet state: Acceleration of trans-cis isomerization by two consecutive picosecond pulses, J. Chem. Phys. 76, p.738–740 (1982)

    Article  ADS  Google Scholar 

  940. {Sect. 5.10.1.2} St.P. Velsko, G.R. Fleming: Solvent influence on photochemical isomerizations: Photophysics of DODCI, Chem. Phys. 65, p.59–70 (1982)

    Article  ADS  Google Scholar 

  941. {Sect. 5.10.1.2} J. Saltiel, D.W. Eaker: Lifetime and geometry of 1-phenyl-2-(2-naphthyl)ethene triplets. Evidence against the triplet mechanism for direct photoisomerization, Chem. Phys. Lett. 75, p.209–213 (1980)

    Article  ADS  Google Scholar 

  942. {Sect. 5.10.1.2} T. Kobayashi, S. Nagakura: The rates of internal conversion and photoisomerization of some carbocanine dyes as revealed from picosecond time-resolved spectroscopy, Chem. Phys. 23, p. 153–158 (1977)

    Article  Google Scholar 

  943. {Sect. 5.10.1.2} S. Völker, J.H. van der Waals: Laser-induced photochemical isomerization of free base porphyrin in an n-octane crystal at 4.2 K, Mol. Phys. 32, p.1703–1718 (1976)

    Article  ADS  Google Scholar 

  944. {Sect. 5.10.1.2} M. Sumitani, S. Nagakura, K. Yoshihara: Laser photolysis study of trans-cis photoisomerization of trans-1-phenyl-2-(2-naphthyl)ethylene, Chem. Phys. Lett. 29, p.410–413 (1974)

    Article  ADS  Google Scholar 

  945. {Sect. 5.10.1.2} E.G. Arthurs, D.J. Bradley, A.G. Roddie: Picosecond measurements of 3,3′-diethyloxadicarbocyanine iodide and photoisomer fluorescence, Chem. Phys. Lett. 22, p.230–234 (1973)

    Article  ADS  Google Scholar 

  946. {Sect. 5.10.1.2} N.G. Basov, A.M. Prokhorov: Possible Methods of Obtaining Active Molecules for a Molecular Oscillator, Sov. Phys. JETP 1, p.184–185 (1955)

    Google Scholar 

  947. {Sect. 5.10.1.2} B. Wei, N. Kobayashi, M. Ichikawa, T. Koyama, Y. Taniguchi, T. Fukuda: Organic solid laser pumped by an organic light-emitting diode, Opt Express 14, p.9436–9443 (2006)

    Article  ADS  Google Scholar 

  948. {Sect. 5.10.1.2} Sun Y.R., N.C. Giebink, H. Kanno, B.W. Ma, M.E. Thompson, S.R. Forrest: Management of singlet and triplet excitons for efficient white organic light-emitting devices, Nature 440, p.908–912 (2006)

    Article  ADS  Google Scholar 

  949. {Sect. 5.10.1.2} D. Pisignano, L. Persano, E. Mele, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, L. Favaretto: Emission properties of printed organic semiconductor lasers, Optics Letters 30, p.260–262 (2005)

    Article  ADS  Google Scholar 

  950. {Sect. 5.10.1.2} J.R. Lawrence, G.A. Turnbull, I.D.W. Samuel, G.J. Richards, P.L. Burn: Optical amplification in a first-generation dendritic organic semiconductor, Optics Letters 29, p.869–871 (2004)

    Article  ADS  Google Scholar 

  951. {Sect. 5.10.1.2} S. Coe, W.K. Woo, M. Bawendi, V. Bulovic: Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 420, p.800–803 (2002)

    Article  ADS  Google Scholar 

  952. {Sect. 5.10.1.2} C. Former, H. Wagner, R. Richert, D. Neher, K. Mullen: Orientation and dynamics of chainlike dipole arrays: Donor-acceptor-substituted oligophenylenevinylenes in a polymer matrix, Macromolecules 32, p.8551–8559 (1999)

    Article  ADS  Google Scholar 

  953. {Sect. 5.10.1.2} R. Hildebrandt, H.M. Keller, G. Marowsky, W. Brutting, T. Fehn, M. Schwoerer, J.E. Sipe: Electric-field-induced optical second-harmonic generation in poly (Phenylene vinylene) light-emitting diodes, Chem Phys 245, p.341–344 (1999)

    Article  Google Scholar 

  954. {Sect. 5.10.1.2} E.I. Maltsev, D.A. Lypenko, B.I. Shapiro, M.A. Brusentseva, G.H.W. Milburn, J. Wright, A. Hendriksen, V.I. Berendyaev, B.V. Kotov, A.V. Vannikov: Electroluminescence of polymer/J-aggregate composites, Appl Phys Lett 75, p.1896–1898 (1999)

    Article  ADS  Google Scholar 

  955. {Sect. 5.10.1.2} D.J. Pinner, R.H. Friend, N. Tessler: Transient electroluminescence of polymer light emitting diodes using electrical pulses, J Appl Phys 86, p.5116–5130 (1999)

    Article  ADS  Google Scholar 

  956. {Sect. 5.10.1.2} Y.Z. Wang, R.G. Sun, F. Meghdadi, G. Leising, A.J. Epstein: Multicolor multilayer light-emitting devices based on pyridine-containing conjugated polymers and para-sexiphenyl oligomer, Appl Phys Lett 74, p.3613–3615 (1999)

    Article  ADS  Google Scholar 

  957. {Sect. 5.10.1.2} A. Yamamori, C. Adachi, T. Koyama, Y. Taniguchi: Electroluminescence of organic light emitting diodes with a thick hole transport layer composed of a triphenylamine based polymer doped with an antimonium compound, J Appl Phys 86, p.4369–4376 (1999)

    Article  ADS  Google Scholar 

  958. {Sect. 5.10.1.2} R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck. Electroluminescence in conjugated polymers, Nature 397, p.121–128 (1999)

    Article  ADS  Google Scholar 

  959. {Sect. 5.10.1.2} V. Bulovic, A. Shoustikov, M.A. Baldo, E. Bose, V.G. Kozlov, M.E. Thompson, S.R. Forrest: Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts, Chem Phys Lett 287, p.455–460 (1998)

    Article  ADS  Google Scholar 

  960. {Sect. 5.10.1.2} A. Kraft, A.C. Grimsdale, A.B. Holmes: Electroluminescent Conjugated Polymers — Seeing Polymers in a New Light, Angew. Chem. Int. Ed. 37, p.402–428 (1998)

    Article  Google Scholar 

  961. {Sect. 5.10.1.2} H. Sirringhaus, N. Tessler, R.H. Friend: Integrated opto-electronic devices based on conjugated polymers, Science 280, p.1741–1744 (1998)

    Article  ADS  Google Scholar 

  962. {Sect. 5.10.1.2} G.H. Gelinck, J.M. Warman, M. Remmers, D. Neher: Narrow-band emissions from conjugated-polymer films, Chem Phys Lett 265, p.320–326 (1997)

    Article  ADS  Google Scholar 

  963. {Sect. 5.10.1.2} Q.B. Pei, G. Yu, C. Zhang, Y. Yang, A.J. Heeger: Polymer light-emitting electrochemical cells, Science 269, p.1086–1088 (1995)

    Article  ADS  Google Scholar 

  964. {Sect. 5.10.1.2} U. Lemmer, R.F. Mahrt, Y. Wada, A. Greiner, H. Bässler, E.O. Göbel: Time resolved luminescence study of recombination processes in electroluminescent polymers, Appl. Phys. Lett. 62, p.2827–2829 (1993)

    Article  ADS  Google Scholar 

  965. {Sect. 5.10.1.2} T. Renger, V. May: Multiple exciton effects in molecular aggregates: Application to a photosynthetic antenna complex, Phys Rev Lett 78, p.3406–3409 (1997)

    Article  ADS  Google Scholar 

  966. {Sect. 5.10.1.2} S. Creighton, J.-K. Hwang, A. Warshel, W.W. Parson, J. Norris: Simulating the Dynamics of the Primary Charge Separation Process in Bacterial Photosynthesis, Biochem. 27, p.774–781 (1988)

    Article  Google Scholar 

  967. {Sect. 5.10.1.2} A. Ogrodnik, N. Remy-Richter, M.E. Michel-Beyerle, R. Feick: Observation of activationless recombination in reaction centers of R. sphaeroides. A new key to the primary electron-transfer mechanism, Chem. Phys. Lett. 135, p.576–581 (1987)

    Article  ADS  Google Scholar 

  968. {Sect. 5.10.1.2} A.W. Rutherford, P. Heathcote: Primary photochemistry in photosystem-I, Photosynthesis Research 6, p.295–316 (1985)

    Article  Google Scholar 

  969. {Sect. 5.10.3} P. Yeh, C. Gu: Photorefractive Materials, Effects, and Applications (SPIE Press, 1994)

    Google Scholar 

  970. {Sect. 5.10.3} P. Yeh, C. Gu: Landmark Papers on Photorefractive Nonlinear Optics (World Scientific, Singapore, 1995)

    Google Scholar 

  971. {Sect. 5.10.3} P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biaggio, P. Gunter: High-resolution, high-speed photorefractive incoherent-to-coherent optical converter, Optics Letters 24, p.199–201 (1999)

    Article  ADS  Google Scholar 

  972. {Sect. 5.10.3} D. Day, M. Gu: Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer, Optics Letters 24, p.948–950 (1999)

    Article  ADS  Google Scholar 

  973. {Sect. 5.10.3} J. Imbrock, S. Wevering, K. Buse, E. Kratzig: Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses, J Opt Soc Am B Opt Physics 16, p.1392–1397 (1999)

    Article  ADS  Google Scholar 

  974. {Sect. 5.10.3} T. Nikolajsen, P.M. Johansen: Low-temperature thermal fixing of holograms in photorefractive La3Ga5SiO14: Pr3+ crystal, Optics Letters 24, p.1419–1421 (1999)

    Article  ADS  Google Scholar 

  975. {Sect. 5.10.3} X.N. Shen, J.H. Zhao, X.L. Lu, Q.Z. Jiang, J.W. Zhang, H.R. Xia, L.H. Song, S.J. Zhang, J.R. Han, H.C. Chen: Photorefractive properties of Cu-doped (K0.5Na0.5) (0.2) (Sr0.75Ba0.25) (0.9)Nb2O6 crystals with different doping levels and different dimensions, J Appl Phys 86, p.3371–3376 (1999)

    Article  ADS  Google Scholar 

  976. {Sect. 5.10.3} E. Soergel, W. Krieger: Profiles of light-induced charge gratings on photorefractive crystals, Phys Rev Lett 83, p.2336–2339 (1999)

    Article  ADS  Google Scholar 

  977. {Sect. 5.10.3} J. Wolff, S. Schloter, U. Hofmann, D. Haarer, S.J. Zilker: Speed enhancement of photorefractive polymers by means of light-induced filling of trapping states, J Opt Soc Am B Opt Physics 16, p.1080–1086 (1999)

    Article  ADS  Google Scholar 

  978. {Sect. 5.10.3} A. ApolinarIribe, N. Korneev, J.J. SanchezMondragon: Beam amplification resulting from non-Bragg wave mixing in photorefractive strontium barium niobate, Optics Letters 23, p. 1877–1879 (1998)

    Article  ADS  Google Scholar 

  979. {Sect. 5.10.3} T. Nikolajsen, P.M. Johansen, E. Dubovik, T. Batirov, R. Djalalov: Photorefractive two-step recording in a piezoelectric La3Ga5SiO14 crystal doped with praseodymium, Optics Letters 23, p.1164–1166 (1998)

    Article  ADS  Google Scholar 

  980. {Sect. 5.10.3} B. Pesach, E. Refaeli, A.J. Agranat: Investigation of the holographic storage capacity of paraelectric K1-xLixTal-yNbyO3:Cu,V, Optics Letters 23, p.642–644 (1998)

    Article  ADS  Google Scholar 

  981. {Sect. 5.10.3} X.N. Shen, T.H. Zhao, R.B. Wang, P.C. Yeh, S.J. Zhang, H.C. Chen: Photorefractive properties of Cu-doped KNSBN crystal with fluorine replacing oxygen, Optics Letters 23, p.1253–1255 (1998)

    Article  ADS  Google Scholar 

  982. {Sect. 5.10.3} A. Brignon, D. Geffroy, J.P. Huignard, M.H. Garrett, I. Mnushkina: Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 mu m, Opt Commun 137, p.311–316 (1997)

    Article  ADS  Google Scholar 

  983. {Sect. 5.10.3} J. Neumann, S. Odoulov: Parametric amplification of a coherent light wave in photorefractive BaTiO3 by a single pump beam, Optics Letters 22, p.1858–1860 (1997)

    Article  ADS  Google Scholar 

  984. {Sect. 5.10.3} P.M. Lundquist, R. Wortmann, C. Geletneky, R.J. Twieg, M. Jurich, V.Y. Lee, C.R. Moylan, D.M. Burland: Organic glasses: A new class of photorefractive materials, Science 274, p.1182–1185 (1996)

    Article  ADS  Google Scholar 

  985. {Sect. 5.10.3} M. Taya, M.C. Bashaw, M.M. Fejer: Photorefractive effects in periodically poled ferroelectrics, Opt. Lett. 21, p.857–859 (1996)

    Article  ADS  Google Scholar 

  986. {Sect. 5.10.3} A.A. Kamshilin, V.V. Prokofiev, T. Jaaskelainen: Beam Fanning and Double Phase Conjugation in a Fiber-Like Photorefractive Sample, IEEE J. QE-31, p.1642–1647 (1995)

    Article  Google Scholar 

  987. {Sect. 5.10.3} F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, D. Hilgenberg: Photorefraction in the ultraviolet: Materials and effects, Appl. Phys. B. 61, p.351–360 (1995)

    Article  ADS  Google Scholar 

  988. {Sect. 5.10.3} D. Psaltis, F. Mok, H.-Y. S. Li: Nonvolatile storage in photorefractive crystals, Opt. Lett. 19, p.210–212 (1994)

    Article  ADS  Google Scholar 

  989. {Sect. 5.10.3} J. Feinberg, D. Heiman, A.R. Tanguay, Jr, R.W. Hellwarth: Photorefractive effects and light-induced charge migration in barium titanate, J. Appl. Phys. 51, p.1297–1305 (1980)

    Article  ADS  Google Scholar 

  990. {Sect. 5.10.3} A.M. Glass: The Photorefractive Effect, Opt. Eng. 17, p.470–479 (1978)

    Google Scholar 

  991. {Sect. 5.10.3} Y. Kawata, H. Ishitobi, S. Kawata: Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory, Optics Letters 23, p.756–758 (1998)

    Article  ADS  Google Scholar 

  992. {Sect. 5.10.3} K. Meerholz, Y. DeNardin, R. Bittner, R. Wortmann, F. Wurthner: Improved performance of photorefractive polymers based on merocyanine dyes in a polar matrix, Appl Phys Lett 73, p.4–6 (1998)

    Article  ADS  Google Scholar 

  993. {Sect. 5.10.3} T. Nikolajsen, P.M. Johansen, X. Yue, D. Kip, E. Kratzig: Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal, Appl Phys Lett 74, p.4037–4039 (1999)

    Article  ADS  Google Scholar 

  994. {Sect. 5.10.3} A. Liu, M.K. Lee, L. Hesselink, S.H. Lee, K.S. Lim: Light-induced absorption of cerium-doped lead barium niobate crystals, Optics Letters 23, p.1618–1620 (1998)

    Article  ADS  Google Scholar 

  995. {Sect. 5.10.3} V.A. Kalinin, K. Shcherbin, L. Solymar, J. Takacs, D.J. Webb: Resonant two-wave mixing in photorefractive materials with the aid of dc and ac fields, Optics Letters 22, p.1852–1854 (1997)

    Article  ADS  Google Scholar 

  996. {Sect. 5.10.3} H. Ueki, Y. Kawata, S. Kawata: Three-dimensional optical bit-memory recording and reading with a photorefractive crystal: Analysis and experiment, Appl Opt 35, p.2457–2465 (1996)

    Article  ADS  Google Scholar 

  997. {Sect. 5.10.3} W.L. She, Z.X. Yu, H.W. Ho, H. Chan, W.K. Lee: Control of self-pumped phase conjugate reflectivity in a photorefractive crystal by another laser beam, Opt Commun 139, p.77–80 (1997)

    Article  ADS  Google Scholar 

  998. {Sect. 5.10.3} H. Guenther, G. Wittmann, R.M. Macfarlane, R.R. Neurgaonkar: Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO3, Optics Letters 22, p.1305–1307 (1997)

    Article  ADS  Google Scholar 

  999. {Sect. 5.10.3} A. Grunnetjepsen, C.L. Thompson, W.E. Moerner: Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier, Science 277, p.549–552 (1997)

    Article  Google Scholar 

  1000. {Sect. 5.10.4} J. Shah: Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, Heidelberg, New York, 1996)

    Google Scholar 

  1001. {Sect. 5.10.4} S. Kakimoto, H. Watanabe: Intervalence band absorption loss coefficients of the active layer for InP-based long wavelength laser diodes, J Appl Phys 87, p.2095–2097 (2000)

    Article  ADS  Google Scholar 

  1002. {Sect. 5.10.4} T. Verbiest, S. VanElshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T.J. Katz, A. Persoons: Strong enhancement of nonlinear optical properties through supramolecular chirality, Science 282, p.913–915 (1998)

    Article  ADS  Google Scholar 

  1003. {Sect. 5.10.4} D.A.B. Miller, C.T. Seaton, M.E. Prise, S.D. Smith: Band-Gap-Resonant Nonlinear Refraction in III–V Semiconductors, Phys. Rev. Lett. 47, p.197–200 (1981)

    Article  ADS  Google Scholar 

  1004. {Sect. 5.10.4} F.J.P. Schuurmans, M. Megens, D. Vanmaekelbergh, A. Lagendijk: Light scattering near the localization transition in macroporous GaP networks, Phys Rev Lett 83, p.2183–2186 (1999)

    Article  ADS  Google Scholar 

  1005. {Sect. 5.10.5} G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov, C.C. Phillips: Laser-induced quantum coherence in a semiconductor quantum well, Phys Rev Lett 84, p.1019–1022 (2000)

    Article  ADS  Google Scholar 

  1006. {Sect. 5.10.5} M. Kira, F. Jahnke, S.W. Koch: Quantum theory of secondary emission in optically excited semiconductor quantum wells, Phys Rev Lett 82, p.3544–3547 (1999)

    Article  ADS  Google Scholar 

  1007. {Sect. 5.10.5} J. Schmitt, P. Mächtle, D. Eck, H. Möhwald, C. A. Helm: Preparation and Optical Properties of Colloidal Gold Monolayers, Langmuir 15, p.3256–3266 (1999)

    Article  Google Scholar 

  1008. {Sect. 5.10.5} D. Birkedal, J. Shah: Femtosecond spectral interferometry of resonant secondary emission from quantum wells: Resonance Rayleigh scattering in the nonergodic regime, Phys Rev Lett 81, p.2372–2375 (1998)

    Article  ADS  Google Scholar 

  1009. {Sect. 5.10.5} D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, C.M. Rouleau: Synthesis of novel thin-film materials by pulsed laser deposition, Science 273, p.898–903 (1996)

    Article  ADS  Google Scholar 

  1010. {Sect. 5.10.5} S.V. Gaponenko, U. Woggon, A. Uhrig, W. Langbein, C. Klingshirn: Narrow-band spectral hole burning in quantum dots, J. Luminesc. 60 & 61, p.302–307 (1994)

    Article  ADS  Google Scholar 

  1011. {Sect. 5.10.5} C. A. Foss, Jr, G. L. Hornyak, J. A. Stockert, Ch. R. Martin: Optically Transparent Nanometal Composite Membranes, Adv. Mater. 5, p.135–137 (1993)

    Article  Google Scholar 

  1012. {Sect. 5.10.5} A.V. Alekseeva, V.A. Bogatyrev, L.A. Dykman, B.N. Khlebtsov, L.A. Trachuk, A.G. Melnikov, N.G. Khlebtsov: Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay, Appl Opt 44, p.6285–6295 (2005)

    Article  ADS  Google Scholar 

  1013. {Sect. 5.10.5} S. DasSarma, D.W. Wang: Many-body renormalization of semiconductor quantum wire excitons: Absorption, gain, binding, and unbinding, Phys Rev Lett 84, p.2010–2013 (2000)

    Article  ADS  Google Scholar 

  1014. {Sect. 5.10.5} O. Mauritz, G. Goldoni, F. Rossi, E. Molinari: Local optical spectroscopy in quantum confined systems: A theoretical description, Phys Rev Lett 82, p.847–850 (1999)

    Article  ADS  Google Scholar 

  1015. {Sect. 5.10.5} T.A. Smith, J. Hotta, K. Sasaki, H. Masuhara, Y. Itoh: Photon pressure-induced association of nanometer-sized polymer chains in solution, J Phys Chem B 103, p.1660–1663 (1999)

    Article  Google Scholar 

  1016. {Sect. 5.10.5} F. Tassone, C. Piermarocchi: Electron-hole correlation effects in the emission of light from quantum wires, Phys Rev Lett 82, p.843–846 (1999)

    Article  ADS  Google Scholar 

  1017. {Sect. 5.10.5} J.H. Golden, F.J. Disalvo, J.M.J. Frechet, J. Silcox, M. Thomas, J. Elman: Subnanometer-diameter wires isolated in a polymer matrix by fast polymerization, Science 273, p.782–784 (1996)

    Article  ADS  Google Scholar 

  1018. {Sect. 5.10.5} J.P. Zhang, D.Y. Chu, S.L. Wu, S.T. Ho, W.G. Bi, C.W. Tu, R.C. Tiberio: Photonic-wire laser, Phys Rev Lett 75, p.2678–2681 (1995)

    Article  ADS  Google Scholar 

  1019. {Sect. 5.10.5} C. A. Foss, Jr, G. L. Hornyak, J. A. Stockert, Ch. R. Martin: Optical Properties of Composite Membranes Containing Arrays of Nanoscopic Gold Cylinders, J. Phys. Chem. 96, p.7497–7499 (1992)

    Article  Google Scholar 

  1020. {Sect. 5.10.5} D. Alexander, J. Bruce, C. Zuhlke, B. Koch, R. Rudebusch, J. Deogun, H. Hamza: Demonstration of a nanoparticle-based optical diode, Optics Letters 31, p. 1957–1959 (2006)

    Article  ADS  Google Scholar 

  1021. {Sect. 5.10.5} S. Reitzenstein, A. Loffler, C. Hofmann, A. Kubanek, M. Kamp, J.P. Reithmaier, A. Forchel, V.D. Kulakovskii, L.V. Keldysh, I.V. Ponomarev, T.L. Reinecke: Coherent photonic coupling of semiconductor quantum dots, Optics Letters 31, p.1738–1740 (2006)

    Article  ADS  Google Scholar 

  1022. {Sect. 5.10.5} B. BenBakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. DiCioccio, J.M. Fedeli: Room-temperature InAs/InP quantum dots laser operation based on heterogeneous “2.5 D” Photonic Crystal, Opt Express 14, p.9269–9276 (2006)

    Article  ADS  Google Scholar 

  1023. {Sect. 5.10.5} N.K. Metzger, E.M. Wright, W. Sibbett, K. Dholakia: Visualization of optical binding of microparticles using a femtosecond fiber optical trap, Opt Express 14, p.3677–3687 (2006)

    Article  ADS  Google Scholar 

  1024. {Sect. 5.10.5} H.B. Liao, W.J. Wen, G.K.L. Wong: Photoluminescence from Au nanoparticles embedded in Au:oxide composite films, J Opt Soc Am B Opt Physics 23, p.2518–2521 (2006)

    Article  ADS  Google Scholar 

  1025. {Sect. 5.10.5} Y. Syvenkyy, B. Kotlyarchuk, A. Zaginey, B. Sahraoui: Laser-induced properties modification of CdTe:Cl and (Cd, Hg)Te: Computer simulation and experimental investigation, Opt Commun 256, p. 342–346 (2005)

    Article  ADS  Google Scholar 

  1026. {Sect. 5.10.5} R.A. Ganeev, A.I. Ryasnyansky, A.L. Stepanov, C. Marques, R.C. daSilva, E. Alves: Application of Z-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles, Opt Commun 253, p.205–213 (2005)

    Article  ADS  Google Scholar 

  1027. {Sect. 5.10.5} I.V. Yurasova, O.L. Antipov: Giant optical nonlinearity of C-70-doped hole-conducting polymer nanocomposite, Opt Commun 224, p.329–336 (2003)

    Article  ADS  Google Scholar 

  1028. {Sect. 5.10.5} MARC Alencar, A.S.L. Gomes, C.B. deAraujo: Directional laserlike emission from a dye-doped polymer containing rutile nanoparticles, J Opt Soc Am B Opt Physics 20, p.564–567 (2003)

    Article  ADS  Google Scholar 

  1029. {Sect. 5.10.5} J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, F. Trager: Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: Influence of particle size, shape, and chemical surrounding — art. no. 257404, Phys Rev Lett 8925, p.7404 (2002)

    Google Scholar 

  1030. {Sect. 5.10.5} J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang, A.P. Alivisatos: Linearly polarized emission from colloidal semiconductor quantum rods, Science 292, p.2060–2063 (2001)

    Article  Google Scholar 

  1031. {Sect. 5.10.5} M.V. Artemyev, U. Woggon: Quantum dots in photonic dots, Appl Phys Lett 76, p.1353–1355 (2000)

    Article  ADS  Google Scholar 

  1032. {Sect. 5.10.5} T. Brunhes, P. Boucaud, S. Sauvage, A. Lemaitre, J.M. Gerard, F. Glotin, R. Prazeres, J.M. Ortega: Infrared second-order optical susceptibility in InAs/GaAs self-assembled quantum dots, Phys Rev B 61, p.5562–5570 (2000)

    Article  ADS  Google Scholar 

  1033. {Sect. 5.10.5} M.Y. Gao, C. Lesser, S. Kirstein, H. Mohwald, A.L. Rogach, H. Weiler: Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films, J Appl Phys 87, p.2297–2302 (2000)

    Article  ADS  Google Scholar 

  1034. {Sect. 5.10.5} T. Makimura, T. Mizuta, K. Murakami: Formation dynamics of silicon nanoparticles after laser ablation studied using plasma emission caused by second-laser decomposition, Appl Phys Lett 76, p.1401–1403 (2000)

    Article  ADS  Google Scholar 

  1035. {Sect. 5.10.5} N. Suzuki, T. Makino, Y. Yamada, T. Yoshida, S. Onari: Structures and optical properties of silicon nanocrystallites prepared by pulsed-laser ablation in inert background gas, Appl Phys Lett 76, p.1389–1391 (2000)

    Article  ADS  Google Scholar 

  1036. {Sect. 5.10.5} M. Ajgaonkar, Y. Zhang, H. Grebel, C.W. White: Nonlinear optical properties of a coherent array of submicron SiO2 spheres (Opal) embedded with Si nanoparticles, Appl Phys Lett 75, p.1532–1534 (1999)

    Article  ADS  Google Scholar 

  1037. {Sect. 5.10.5} J. Bosbach, D. Martin, F. Stietz, T. Wenzel, F. Trager: Laser-based method for fabricating monodisperse metallic nanoparticles, Appl Phys Lett 74, p.2605–2607 (1999)

    Article  ADS  Google Scholar 

  1038. {Sect. 5.10.5} B. Damilano, N. Grandjean, F. Semond, J. Massies, M. Leroux: From visible to white light emission by GaN quantum dots on Si (111) substrate, Appl Phys Lett 75, p.962–964 (1999)

    Article  ADS  Google Scholar 

  1039. {Sect. 5.10.5} W. Kim, V.P. Safonov, V.M. Shalaev, R.L. Armstrong: Fractals in microcavities: Giant coupled, multiplicative enhancement of optical responses, Phys Rev Lett 82, p.4811–4814 (1999)

    Article  ADS  Google Scholar 

  1040. {Sect. 5.10.5} A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, T. Kushida: Wavelength-and angle-selective optical memory effect by interference of multiple-scattered light, Phys Rev Lett 83, p.1582–1585 (1999)

    Article  ADS  Google Scholar 

  1041. {Sect. 5.10.5} B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg: Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation, Phys Rev Lett 83, p.4421–4424 (1999)

    Article  ADS  Google Scholar 

  1042. {Sect. 5.10.5} K.P. ODonnell, R.W. Martin, P.G. Middleton: Origin of luminescence from InGaN diodes, Phys Rev Lett 82, p.237–240 (1999)

    Article  ADS  Google Scholar 

  1043. {Sect. 5.10.5} D. Orlikowski, M.B. Nardelli, J. Bernholc, C. Roland: Addimers on strained carbon nanotubes: A new route for quantum dot formation?, Phys Rev Lett 83, p.4132–4135 (1999)

    Article  ADS  Google Scholar 

  1044. {Sect. 5.10.5} L.M. Robinson, H. Rho, J.C. Kim, H.E. Jackson, L.M. Smith, S. Lee, M. Dobrowolska, J.K. Furdyna: Quantum dot exciton dynamics through a nanoaperture: Evidence for two confined states, Phys Rev Lett 83, p.2797–2800 (1999)

    Article  ADS  Google Scholar 

  1045. {Sect. 5.10.5} P.C. Sercel, A.L. Efros, M. Rosen: Intrinsic gap states in semiconductor nanocrystals, Phys Rev Lett 83, p.2394–2397 (1999)

    Article  ADS  Google Scholar 

  1046. {Sect. 5.10.5} W.S. Shi, Z.H. Chen, N.N. Liu, H.B. Lu, Y.L. Zhou, D.F. Cui, G.Z. Yang: Nonlinear optical properties of self-organized complex oxide Ce: BaTiO3 quantum dots grown by pulsed laser deposition, Appl Phys Lett 75, p.1547–1549 (1999)

    Article  ADS  Google Scholar 

  1047. {Sect. 5.10.5} M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen, Phys Rev Lett 82, p.197–200 (1999)

    Article  ADS  Google Scholar 

  1048. {Sect. 5.10.5} Y. Yang, V.J. Leppert, S.H. Risbud, B. Twamley, P.P. Power, H.W.H. Lee: Blue luminescence from amorphous GaN nanoparticles synthesized in situ in a polymer, Appl Phys Lett 74, p.2262–2264 (1999)

    Article  ADS  Google Scholar 

  1049. {Sect. 5.10.5} A.E. Zhukov, A.R. Kovsh, N.A. Maleev, S.S. Mikhrin, V.M. Ustinov, A.F. Tsatsulnikov, M.V. Maximov, B.V. Volovik, D.A. Bedarev, Y.M. Shernyakov et al.: Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates, Appl Phys Lett 75, p.1926–1928 (1999)

    Article  ADS  Google Scholar 

  1050. {Sect. 5.10.5} J. Hodak, I. Martini, G.V. Hartland: Ultrafast study of electron-phonon coupling in colloidal gold particles, Chem Phys Lett 284, p.135–141 (1998)

    Article  ADS  Google Scholar 

  1051. {Sect. 5.10.5} H. Spocker, M. Portune, U. Woggon: Biexcitonic fingerprint in the nondegenerate four-wave-mixing signal of weakly confined cadmium sulfur quantum dots, Optics Letters 23, p.427–429 (1998)

    Article  ADS  Google Scholar 

  1052. {Sect. 5.10.5} Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa: Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl Phys Lett 72, p.3270–3272 (1998)

    Article  ADS  Google Scholar 

  1053. {Sect. 5.10.5} Al.L. Efross, M. Rosen: Quantum size level structure of narrow-gap semiconductor nanocrystals: Effect of band coupling, Phys. Rev. B 58, p.7120–7135 (1998)

    Article  ADS  Google Scholar 

  1054. {Sect. 5.10.5} J.M. Ballesteros, R. Serna, J. Solis, C.N. Afonso, A.K. Petfordlong, D.H. Osborne, R.F. Haglund: Pulsed laser deposition of Cu:A12O3 nanocrystal thin films with high third-order optical susceptibility, Appl Phys Lett 71, p.2445–2447 (1997)

    Article  ADS  Google Scholar 

  1055. {Sect. 5.10.5} B.A. Smith, J.Z. Zhang, U. Giebel, G. Schmid: Direct probe of size-dependent electronic relaxation in single-sized Au and nearly monodisperse Pt colloidal nanoparticles, Chem Phys Lett 270, p.139–144 (1997)

    Article  ADS  Google Scholar 

  1056. {Sect. 5.10.5} S. Vijayalakshmi, M.A. George, H. Grebel: Nonlinear optical properties of silicon nanoclusters, Appl Phys Lett 70, p.708–710 (1997)

    Article  ADS  Google Scholar 

  1057. {Sect. 5.10.5} S. Vijayalakshmi, F. Shen, H. Grebel: Artificial dielectrics: Nonlinear optical properties of silicon nanoclusters at lambda=532 nm, Appl Phys Lett 71, p.3332–3334 (1997)

    Article  ADS  Google Scholar 

  1058. {Sect. 5.10.5} J.Q. Yu, H.M. Liu, Y.Y. Wang, F.E. Fernandez, W.Y. Jia, L.D. Sun, C.M. Jin, D. Li, J.Y. Liu, S.H. Huang: Irradiation-induced luminescence enhancement effect of ZnS: Mn2+ nanoparticles in polymer films, Optics Letters 22, p.913–915 (1997)

    Article  ADS  Google Scholar 

  1059. {Sect. 5.10.5} S.A. Empedocles, M.G. Bawendi: Quantum-confined stark effect in single CdSe nanocrystallite quantum dots, Science 278, p.2114–2117 (1997)

    Article  ADS  Google Scholar 

  1060. {Sect. 5.10.5} G.L. Hornyak, Ch.J. Patrissi, Ch.R. Martin: Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit, J. Phys. Chem. B 101, p.1548–1555 (1997)

    Article  Google Scholar 

  1061. {Sect. 5.10.5} M. Nikl, K. Nitsch, K. Polák, E. Mihókova, S. Zazubovich, G.P. Pazzi, P. Fabeni, L. Salvini, R. Aceves, M. Barbosa-Flores, R. Perez Salas, Gurioli, A. Scacco: Quantum size effect in the excitone luminescence of CaPbX3-like quantum dots in CaX (X = Cl, Br) single crystal host, J. Luminesc. 72–74, p.377–379 (1997)

    Article  Google Scholar 

  1062. {Sect. 5.10.5} C. A. Foss, Jr, G. L. Hornyak, J. A. Stockert, Ch. R. Martin: Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape, J. Phys. Chem. 98, p.2963–2971 (1994)

    Article  Google Scholar 

  1063. {Sect. 5.10.5} Y. Kayanuma: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Phys. Rev. B 38, p.9797–9805 (1988)

    Article  ADS  Google Scholar 

  1064. {Sect. 5.10.5} K. Tachibana, T. Someya, Y. Arakawa: Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition, Appl Phys Lett 74, p.383–385 (1999)

    Article  ADS  Google Scholar 

  1065. {Sect. 5.10.5} X. Leyronas, J. Tworzydlo, C.W.J. Beenakker: Non-Cayleytree model for quasiparticle decay in a quantum dot, Phys Rev Lett 82, p.4894–4897 (1999)

    Article  ADS  Google Scholar 

  1066. {Sect. 5.10.5} M. Rohner, J.P. Reithmaier, A. Forchel, F. Schäfer, H. Zull: Laser emission from photonic dots, Appl Phys Lett 71, p.488–490 (1997)

    Article  ADS  Google Scholar 

  1067. {Sect. 5.10.5} D.L. Andrews, D.S. Bradshaw: Laser-induced forces between carbon nanotubes, Optics Letters 30, p.783–785 (2005)

    Article  ADS  Google Scholar 

  1068. {Sect. 5.10.5} M.Y. Sfeir, T. Beetz, F. Wang, L.M. Huang, X.M.H. Huang, M.Y. Huang, J. Hone, S. OBrien, J.A. Misewich, T.F. Heinz, L.J. Wu, Y.M. Zhu, L.E. Brus: Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure, Science 312, p.554–556 (2006)

    Article  ADS  Google Scholar 

  1069. {Sect. 5.10.5} X.C. Liu, J.H. Si, B.H. Chang, G. Xu, Q.G. Yang, Z.W. Pan, S.S. Xie, P.X. Ye, J.H. Fan, M.X. Wan: Third-order optical nonlinearity of the carbon nanotubes, Appl Phys Lett 74, p.164–166 (1999)

    Article  ADS  Google Scholar 

  1070. {Sect. 5.10.5} A. Rubio, D. SanchezPortal, E. Artacho, P. Ordejon, J.M. Soler: Electronic states in a finite carbon nanotube: A one-dimensional quantum box, Phys Rev Lett 82, p.3520–3523 (1999)

    Article  ADS  Google Scholar 

  1071. {Sect. 5.10.5} M.L. Terranova, S. Piccirillo, V. Sessa, S. Botti, M. Rossi: Photoluminescence from silicon nanoparticles in a diamond matrix, Appl Phys Lett 74, p.3146–3148 (1999)

    Article  ADS  Google Scholar 

  1072. {Sect. 5.10.5} Q.Y. Wang, S.R. Challa, D.S. Sholl, J.K. Johnson: Quantum sieving in carbon nanotubes and zeolites, Phys Rev Lett 82, p.956–959 (1999)

    Article  ADS  Google Scholar 

  1073. {Sect. 5.10.5} Y. Zhang, S. Iijima: Elastic response of carbon nanotube bundles to visible light, Phys Rev Lett 82, p.3472–3475 (1999)

    Article  ADS  Google Scholar 

  1074. {Sect. 5.10.5} M. Deubel, M. Wegener, S. Linden, G. vonFreymann, S. John: 3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing, Optics Letters 31, p.805–807 (2006)

    Article  ADS  Google Scholar 

  1075. {Sect. 5.10.5} A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tuennermann, F. Lederer: Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica, Opt Express 14, p.6055–6062 (2006)

    Article  ADS  Google Scholar 

  1076. {Sect. 5.10.5} A.M. Kowalevicz, V. Sharma, E.P. Ippen, J.G. Fujimoto, K. Minoshima: Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator, Optics Letters 30, p.1060–1062 (2005)

    Article  ADS  Google Scholar 

  1077. {Sect. 5.10.5} N. Takeshima, Y. Narita, T. Nagata, S. Tanaka, K. Hirao: Fahrication of photonic crystals in ZnS-doped glass, Optics Letters 30, p.537–539 (2005)

    Article  ADS  Google Scholar 

  1078. {Sect. 5.10.5} Y. Akahane, T. Asano, B.S. Song, S. Noda: Fine-tuned high-Q photonic-crystal nanocavity, Opt Express 13, p.1202–1214 (2005)

    Article  ADS  Google Scholar 

  1079. {Sect. 5.10.5} M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa: Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice — art. no. 123906, Phys Rev Lett 9212, p.3906 (2004)

    Google Scholar 

  1080. {Sect. 5.10.5} P.P. Markowicz, H. Tiryaki, H. Pudavar, P.N. Prasad, N.N. Lepeshkin, R.W. Boyd: Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals — art. no. 083903, Phys Rev Lett 9208, p.3903 (2004)

    Google Scholar 

  1081. {Sect. 5.10.5} Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao: Self-organized nanogratings in glass irradiated by ultrashort light pulses — art. no. 247405, Phys Rev Lett 9124, p.7405 (2003)

    Google Scholar 

  1082. {Sect. 5.10.5} R.S. Taylor, C. Hnatovsky, E. Simova, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum: Femtosecond laser fabrication of nanostructures in silica glass, Optics Letters 28, p.1043–1045 (2003)

    Article  ADS  Google Scholar 

  1083. {Sect. 5.10.5} S.O. Konorov, A.B. Fedotov, A.A. Ivanov, M.V. Alfimov, S.V. Zabotnov, A.N. Naumov, D.A. SidorovBiryukov, A.A. Podshivalov, A.N. Petrov, L. Fornarini, M. Carpanese, G. Ferrante, R. Fantoni, A.M. Zheltikov: Second-and third-harmonic generation as a local probe for nanocrystal-doped suppressed optical polymer materials with a breakdown threshold, Opt Commun 224, p.309–320 (2003)

    Article  ADS  Google Scholar 

  1084. {Sect. 5.10.5} L. Pang, W. Nakagawa, Y. Fainman: Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write, Appl Opt 42, p.5450–5456 (2003)

    Article  ADS  Google Scholar 

  1085. {Sect. 5.10.5} K. Minoshima, A.M. Kowalevicz, E.P. Ippen, J.G. Fujimoto: Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing, Opt Express 10, p.645–652 (2002)

    ADS  Google Scholar 

  1086. {Sect. 5.10.5} S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, A. Chutinan: Semiconductor three-dimensional and two-dimensional photonic crystals and devices, Ieee J Quantum Electron 38, p.726–735 (2002)

    Article  ADS  Google Scholar 

  1087. {Sect. 5.10.5} M.L.M. Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, N.F. vanHulst: Tracking femtosecond laser pulses in space and time, Science 294, p.1080–1082 (2001)

    Article  ADS  Google Scholar 

  1088. {Sect. 5.10.5} S. Sasaki, K. Nakamura, Y. Hamabe, E. Kurahashi, T. Hiroi: Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering, Nature 410, p.555–557 (2001)

    Article  ADS  Google Scholar 

  1089. {Sect. 5.10.5} C.M. Soukoulis (ed.): Photonic Band Gap Materials (Kluwer Academic Publishers, Dordrecht, 1996)

    Google Scholar 

  1090. {Sect. 5.10.5} K. Busch, S. John: Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum, Phys Rev Lett 83, p.967–970 (1999)

    Article  ADS  Google Scholar 

  1091. {Sect. 5.10.5} P. Halevi, A.A. Krokhin, J. Arriaga: Photonic crystal optics and homogenization of 2D periodic composites, Phys Rev Lett 82, p.719–722 (1999)

    Article  ADS  Google Scholar 

  1092. {Sect. 5.10.5} M. Bayer, T. Gutbrod, J.P. Reithmaier, A. Forchel, T.L. Reinecke, P.A. Knipp, A.A. Dremin, V.D. Kulakovskii: Optical modes in photonic molecules, Phys Rev Lett 81, p.2582–2585 (1998)

    Article  ADS  Google Scholar 

  1093. {Sect. 5.10.5} G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M.M. Sigalas, C.M. Soukoulis, G. Kiriakidis, T. Pedersen, et al.: Fabrication of photonic crystals by deep x-ray lithography, Appl Phys Lett 71, p.1441–1443 (1997)

    Article  ADS  Google Scholar 

  1094. {Sect. 5.10.5} S. John, T. Quang: Resonant nonlinear dielectric response in a photonic band gap material, Phys Rev Lett 76, p.2484–2487 (1996)

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Nonlinear Interactions of Light and Matter with Absorption. In: Photonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45158-7_5

Download citation

Publish with us

Policies and ethics