Skip to main content

Linear Interactions Between Light and Matter

  • Chapter
Photonics
  • 2904 Accesses

Abstract

Linear or conventional optics is the basis of all photonic applications. In these linear interactions of light with matter the relative change of the intensity is not a function of the used intensity. This in these conventional optical experiments the applied incident intensity is not important and often not even measured. This is in contrast to nonlinear interactions which are crucially dependent on the incident intensity, as will be described in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. {Sect. 3.2} M.H. Chiu, J.Y. Lee, D.C. Su: Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry, Appl Opt 38, p.4047–4052 (1999)

    Article  ADS  Google Scholar 

  2. {Sect. 3.2} S.M. Mian, A.Y. Hamad, J.P. Wicksted: Refractive index measurements using a CCD, Appl Opt 35, p.6825–6826 (1996)

    Article  ADS  Google Scholar 

  3. {Sect. 3.2} Y.P. Zhang, R. Kachru: Photon-echo novelty filter for measuring a sudden change in index of refraction, Appl Opt 35, p.6762–6766 (1996)

    Article  ADS  Google Scholar 

  4. {Sect. 3.2} Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama: Refractive indices and extinction coefficients of polymers for the mid-infrared region, Appl Opt 37, p.7091–7095 (1998)

    Article  ADS  Google Scholar 

  5. {Sect. 3.2} M.J. Weber (ed.): CRC Handbook of Laser Science and Technology, Vol. IV-Optical Materials (CRC Press, Inc, Boca Raton, 1986)

    Google Scholar 

  6. {Sect. 3.3.1} R.C. Hilborn: Einstein coefficients, cross sections, f values, dipole moments, and all that, Am. J. Phys.50, p.982–986 (1982)

    Article  ADS  Google Scholar 

  7. {Sect. 3.3.1} M.C.E. Huber, R.J. Sandeman: The measurement of oscillator strengths, Rep. Progr. Phys. 49, p.397–490 (1986)

    Article  ADS  Google Scholar 

  8. {Sect. 3.3.3} C. Rothe, S.I. Hintschich, A.P. Monkman: Violation of the exponential-decay law at long times — art. no. 163601, Phys Rev Lett 9616, p.3601 (2006)

    Google Scholar 

  9. {Sect. 3.3.3} R. Carminati, J.J. Greffet, C. Henkel, J.M. Vigoureux: Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle, Opt Commun 261, p.368–375 (2006)

    Article  ADS  Google Scholar 

  10. {Sect. 3.3.3} M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda: Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals, Science 308, p.1296–1298 (2005)

    Article  ADS  Google Scholar 

  11. {Sect. 3.3.3} P. Vukusic, I. Hooper: Directionally controlled fluorescence emission in butterflies, Science 310, p.1151 (2005)

    Article  Google Scholar 

  12. {Sect. 3.3.3} K. Yasui: Single-bubble sonoluminescence from hydrogen, J Chem Phys 111, p.5384–5389 (1999)

    Article  ADS  Google Scholar 

  13. {Sect. 3.3.3} J. Holzfuss, M. Ruggeberg, A. Billo: Shock wave emissions of a sonoluminescing bubble, Phys Rev Lett 81, p.5434–5437 (1998)

    Article  ADS  Google Scholar 

  14. {Sect. 3.3.3} J.R. Willison: Sonoluminescence: Proton-tunneling radiation, Phys Rev Lett 81, p.5430–5433 (1998)

    Article  ADS  Google Scholar 

  15. {Sect. 3.3.4} T. Renger, V. May: Multiple exciton effects in molecular aggregates: Application to a photosynthetic antenna complex, Phys Rev Lett 78, p.3406–3409 (1997)

    Article  ADS  Google Scholar 

  16. {Sect. 3.3.4} S. Savikhin, D.R. Buck, W.S. Struve: Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels, Chem Phys 223, p.303–312 (1997)

    Article  Google Scholar 

  17. {Sect. 3.3.4} M. Joffre, D. Hulin, A. Migus, A. Antonietti, C. Benoit à la Guillaume, N. Peyghambarian, M. Lindberg, S.W. Koch: Coherent effects in pump-probe spectroscopy of excitons, Opt. Lett. 13, p.276–278 (1988)

    Article  ADS  Google Scholar 

  18. {Sect. 3.3.4} E. Morikawa, K. Shikichi, R. Katoh, M. Kotani: Transient photoabsorption by singlet excitons in p-terphenyl single crystals, Chem. Phys. Lett. 131, p.209–212 (1986)

    Article  ADS  Google Scholar 

  19. {Sect. 3.3.4} W.T. Simpson, D.L. Peterson: Coupling Strength for Resonance Force Transfer of Electronic Energy in Van der Waals Solids, J. Chem. Phys. 26, p.588–593 (1957)

    Article  ADS  Google Scholar 

  20. {Sect. 3.3.4} J. R. Lakowicz: Principles of Fluorescence Spectroscopy (Plenum Press, New York, London, 1983)

    Google Scholar 

  21. {Sect. 3.3.4} Th. Förster: Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys. 6, p.55–75 (1948)

    Article  Google Scholar 

  22. {Sect. 3.4.3} Z.W. Yan, L. Ju, C.N. Zhao, S. Gras, D.G. Blair, M. Tokunari, K. Kuroda, J.M. Mackowski, A. Remillieux: Rayleigh scattering, absorption, and birefringence of large-size bulk single-crystal sapphire, Appl Opt 45, p.2631–2637 (2006)

    Article  ADS  Google Scholar 

  23. {Sect. 3.4.3} N. Ho, M.C. Phillips, H. Qiao, P.J. Allen, K. Krishnaswami, B.J. Riley, T.L. Myers, N.C. Anheier: Single-mode low-loss chalcogenide glass waveguides for the mid-infrared, Optics Letters 31, p.1860–1862 (2006)

    Article  ADS  Google Scholar 

  24. {Sect. 3.4.3} S.S. Bayya, G.D. Chin, J.S. Sanghera, I.D. Aggarwal: Germanate glass as a window for high energy laser systems, Opt Express 14, p.11687–11693 (2006)

    Article  ADS  Google Scholar 

  25. {Sect. 3.4.3} H. Bach, N. Neuroth (eds.): The Properties of Optical Glass (Springer, Berlin, Heidelberg, New York, 1998)

    Google Scholar 

  26. {Sect. 3.4.3} D. N. Nikogosyan: Properties of Optical and Laser-Related Materials — A Handbook (John Wiley & Sons, Chichester, 1997)

    Google Scholar 

  27. {Sect. 3.4.3} H. Hosono, M. Mizuguchi, L. Skuja, T. Ogawa: Fluorine-doped SiO2 glasses for F-2 excimer laser optics: fluorine content and color-center formation, Optics Letters 24, p.1549–1551 (1999)

    Article  ADS  Google Scholar 

  28. {Sect. 3.4.3} V. Liberman, M. Rothschild, J.H.C. Sedlacek, R.S. Uttaro, A. Grenville, A.K. Bates, C. VanPeski: Excimer-laser-induced degradation of fused silica and calcium fluoride for 193-nm lithographic applications, Optics Letters 24, p.58–60 (1999)

    Article  ADS  Google Scholar 

  29. {Sect. 3.5.0} M.H. Chiu, J.Y. Lee, D.C. Su: Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry, Appl Opt 38, p.4047–4052 (1999)

    Article  ADS  Google Scholar 

  30. {Sect. 3.5.3} B.A. Hooper, Y. Domankevitz, C.P. Lin, R.R. Anderson: Precise, controlled laser delivery with evanescent optical waves, Appl Opt 38, p.5511–5517 (1999)

    Article  ADS  Google Scholar 

  31. {Sect. 3.5.3} A.C.R. Pipino: Ultrasensitive surface spectroscopy with a miniature optical resonator, Phys Rev Lett 83, p.3093–3096 (1999)

    Article  ADS  Google Scholar 

  32. {Sect. 3.5.3} S. Chang, S.S. Lee: Optical torque exerted on a sphere in the evanescent field of a circularly-polarized Gaussian laser beam, Opt Commun 151, p.286–296 (1998)

    Article  ADS  Google Scholar 

  33. {Sect. 3.5.3} H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, J. Mlynek: Quasi-2D gas of laser cooled atoms in a planar matter waveguide, Phys Rev Lett 81, p.5298–5301 (1998)

    Article  ADS  Google Scholar 

  34. {Sect. 3.5.3} V.G. Bordo, C. Henkel, A. Lindinger, H.G. Rubahn: Evanescent wave fluorescence spectra of Na atoms, Opt Commun 137, p.249–253 (1997)

    Article  ADS  Google Scholar 

  35. {Sect. 3.5.3} X.H. Xu, E.S. Yeung: Direct measurement of single-molecule diffusion and photodecomposition in free solution, Science 275, p.1106–1109 (1997)

    Article  Google Scholar 

  36. {Sect. 3.5.3} R.H. Renard: Total Reflection: A New Evaluation of the Goos-Hänchen Shift, J. Opt. Soc. Am. 54, p.1190–1197 (1964)

    Article  ADS  Google Scholar 

  37. {Sect. 3.6} A. Gatto, R. Thielsch, J. Heber, N. Kaiser, D. Ristau, S. Gunster, J. Kohlhaas, M. Marsi, M. Trovo, R. Walker, D. Garzella, M.E. Couprie, P. Torchio, M. Alvisi, C. Amra: High-performance deep-ultraviolet optics for free-electron lasers, Appl Opt 41, p.3236–3241 (2002)

    Article  ADS  Google Scholar 

  38. {Sect. 3.6} S. Walheim, E. Schaffer, J. Mlynek, U. Steiner: Nanophase-separated polymer films as high-performance antireflection coatings, Science 283, p.520–522 (1999)

    Article  ADS  Google Scholar 

  39. {Sect. 3.6} F. Loewenthal, R. Tommasini, J.E. Balmer: Single-shot measurement of laser-induced damage thresholds of thin film coatings, Opt Commun 152, p.168–174 (1998)

    Article  ADS  Google Scholar 

  40. {Sect. 3.6} Y.A. Uspenskii, V.E. Levashov, A.V. Vinogradov, A.I. Fedorenko, V.V. Kondratenko, Y.P. Pershin, E.N. Zubarev, V.Y. Fedotov: High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35–50 nm, Optics Letters 23, p.771–773 (1998)

    Article  ADS  Google Scholar 

  41. {Sect. 3.6} S.M. Xiong, Y.D. Zhang: Optical coatings for deuterium fluoride chemical laser systems, Appl Opt 36, p.4958–4961 (1997)

    Article  ADS  Google Scholar 

  42. {Sect. 3.6} G. Emiliani, A. Piegari, S. De Silvestri, P. Laporta, V. Magni: Optical coatings with variable reflectance for laser mirrors, Appl. Opt. 28, p.2832–2837 (1989)

    Article  ADS  Google Scholar 

  43. {Sect. 3.12} T.D. Goodman, M. Mansuripur: Subtle effects of the substrate in optical disk data storage systems, Appl Opt 35, p.6747–6753 (1996)

    Article  ADS  Google Scholar 

  44. {Sect. 3.12} Z.X. Shao: Precise and versatile formula for birefringent filters, Appl Opt 35, p.4147–4151 (1996)

    Article  ADS  Google Scholar 

  45. {Sect. 3.12} J.F. deBoer, T.E. Milner, M.J.C. Vangemert, J.S. Nelson: Two-dimensional birefringence imaging in biological tissue by polarization*sensitive optical coherence tomography, Optics Letters 22, p.934–936 (1997)

    Article  ADS  Google Scholar 

  46. {Sect. 3.12} F.S. Pavone, G. Bianchini, F.S. Cataliotti, T.W. Hansch, M. Inguscio: Birefringence in electromagnetically induced transparency, Optics Letters 22, p.736–738 (1997)

    Article  ADS  Google Scholar 

  47. {Sect. 3.9.4} E.A. Khazanov: Slab-based Faraday isolators and Faraday mirrors for 10-kW average laser power, Appl Opt 43, p.1907–1913 (2004)

    Article  ADS  Google Scholar 

  48. {Sect. 3.7} E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D.H. Reitze: Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators, J Opt Soc Am B Opt Physics 17, p.99–102 (2000)

    Article  ADS  Google Scholar 

  49. {Sect. 3.7} P. Denatale, L. Gianfrani, S. Viciani, M. Inguscio: Spectroscopic observation of the Faraday effect in the far infrared, Optics Letters 22, p.1896–1898 (1997)

    Article  ADS  Google Scholar 

  50. {Sect. 3.7} Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, B. Arad: Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas, Phys Rev Lett 78, p.1707–1710 (1997)

    Article  ADS  Google Scholar 

  51. {Sect. 3.7} T. Verbiest, M. Kauranen, A. Persoons: Light-polarization-induced optical activity, Phys Rev Lett 82, p.3601–3604 (1999)

    Article  ADS  Google Scholar 

  52. {Sect. 3.7} E. Westin, S. Wabnitz, R. Frey, C. Flytzanis: Polarization flip-flop operation and dissipative structure generation with nonlinear gyrotropic resonators, Opt Commun 158, p.97–100 (1998)

    Article  ADS  Google Scholar 

  53. {Sect. 3.9.1} P. Baues: Huygens’ Principle in Inhomogeneous, Isotropic Media and a General Integral Equation Applicable to Optical Resonators, Opto-Electr. 1, p.37–44 (1969)

    Article  Google Scholar 

  54. {Sect. 3.9.1} J.E. Harvey, C.L. Vernold, A. Krywonos, P.L. Thompson: Diffracted radiance: a fundamental quantity in nonparaxial scalar diffraction theory, Appl Opt 38, p.6469–6481 (1999)

    Article  ADS  Google Scholar 

  55. {Sect. 3.9.1} Y. Takaki, H. Ohzu: Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy, Appl Opt 38, p.2204–2211 (1999)

    Article  ADS  Google Scholar 

  56. {Sect. 3.9.1} J.X. Pu, H.H. Zhang, S. Nemoto: Spectral shifts and spectral switches of partially coherent light passing through an aperture, Opt Commun 162, p.57–63 (1999)

    Article  ADS  Google Scholar 

  57. {Sect. 3.9.1} W.P. Huang, C.L. Xu: A Wide-Angle Vector Beam Propagation Method, IEEE Photonics Technol. Lett. 4, p.1118–1120 (1992)

    Article  ADS  Google Scholar 

  58. {Sect. 3.9.2} C. J.R. Sheppard, P. Torok: Dependence of focal shift on Fresnel number and angular aperture, Optics Letters 23, p.1803–1804 (1998)

    Article  ADS  Google Scholar 

  59. {Sect. 3.9.3} S.A. Collins: Lens-System Diffraction Integral Written in Terms of Matrix Opitcs, J. Opt. Soc. Am. 60, p.1168–1177 (1970)

    Article  ADS  Google Scholar 

  60. {Sect. 3.9.6} Z.P. Jiang, R. Jacquemin, W. Eberhardt: Time dependence of Eresnel diffraction of ultrashort laser pulses by a circular aperture, Appl Opt 36, p.4358–4361 (1997)

    Article  ADS  Google Scholar 

  61. {Sect. 3.9.8} F. Ferri, D. Magatti, A. Gatti, E. Brambilla, L.A. Lugiato: High-resolution ghost image and ghost diffraction experiments with thermal light, Physical Review Letters 94, p.183602-1–183602-4 (2005)

    Article  ADS  Google Scholar 

  62. {Sect. 3.9.8} I.V. Sokolov, M.I. Kolobov: Squeezed-light source for superresolving microscopy, Optics Letters 29, p.703–705 (2004)

    Article  ADS  Google Scholar 

  63. {Sect. 3.9.8} M.I. Kolobov, D. Fabre: C Quantum limits on optical resolution, Physical Review Letters 85, p. 3789–3792 (2000)

    Article  ADS  Google Scholar 

  64. {Sect. 3.9.8} T.B. Pittman, Y.H. Shih, D.V. Strekalov, A.V. Sergienko: Optical imaging by means of two-photon quantum entanglement, Physical Review A 52, p.R3429–R3432 (1995)

    Article  ADS  Google Scholar 

  65. {Sect. 3.9.8} C.T. Hsieh, C.K. Lee: Cylindrical-type nanometer-resolution laser diffractive optical encoder, Appl Opt 38, p.4743–4750 (1999)

    Article  ADS  Google Scholar 

  66. {Sect. 3.9.8} G. Andersen, J. Munch, P. Veitch: Compact, holographic correction of aberrated telescopes, Appl Opt 36, p.1427–1432 (1997)

    Article  ADS  Google Scholar 

  67. {Sect. 3.9.8} I. Leiserson, S.G. Lipson, V. Sarafis: Superresolution in farfield imaging, Optics Letters 25, p.209–211 (2000)

    Article  ADS  Google Scholar 

  68. {Sect. 3.9.8} F. Dorchies, J.R. Marques, B. Cros, G. Matthieussent, C. Courtois, T. Velikoroussov, P. Audebert, J.P. Geindre, S. Rebibo, G. Hamoniaux et al.: Monomode guiding of 10 (16) W/cm (2) laser pulses over 100 Rayleigh lengths in hollow capillary dielectric tubes, Phys Rev Lett 82, p.4655–4658 (1999)

    Article  ADS  Google Scholar 

  69. {Sect. 3.9.8} M.K. Lewis, P. Wolanin, A. Gafni, D.G. Steel: Near-field scanning optical microscopy of single molecules by femtosecond two-photon excitation, Optics Letters 23, p.1111–1113 (1998)

    Article  ADS  Google Scholar 

  70. {Sect. 3.9.8} J. Tominaga, T. Nakano, N. Atoda: An approach for recording and readout beyond the diffraction limit with an Sb thin film, Appl Phys Lett 73, p.2078–2080 (1998)

    Article  ADS  Google Scholar 

  71. {Sect. 3.9.8} A. vonPfeil, B. Messerschmidt, V. Blumel, T. Possner: Making fast cylindrical gradient-index lenses diffraction limited by using a wavefront-correction element, Appl Opt 37, p.5211–5215 (1998)

    Article  ADS  Google Scholar 

  72. {Sect. 3.9.8} W.H. Yeh, L.F. Li, M. Mansuripur: Vector diffraction and polarization effects in an optical disk system, Appl Opt 37, p.6983–6988 (1998)

    Article  ADS  Google Scholar 

  73. {Sect. 3.9.8} A. Yoshida, T. Asakura: Propagation and focusing of Gaussian laser beams beyond conventional diffraction limit, Opt Commun 123, p.694–704 (1996)

    Article  ADS  Google Scholar 

  74. {Sect. 3.9.8} M. A. Paesler, P. J. Moyer: Near-Field Optics (John Wiley & Sons, Chichester, 1996)

    Google Scholar 

  75. {Sect. 3.9.9} B.T. Teipen, D.L. MacFarlane: Modulation transfer function measurements of microjetted microlenses, Appl Opt 38, p.2040–2046 (1999)

    Article  ADS  Google Scholar 

  76. {Sect. 3.9.9} O. Hadar, A. Dogariu, G.D. Boreman: Angular dependence of sampling modulation transfer function, Appl Opt 36, p.7210–7216 (1997)

    Article  ADS  Google Scholar 

  77. {Sect. 3.9.9} S. Makki, Z. Wang, J.R. Leger: Laser beam relaying with phase-conjugate diffractive optical elements, Appl Opt 36, p.4749–4755 (1997)

    Article  ADS  Google Scholar 

  78. {Sect. 3.9.10} M.W. Noel, C.R. Stroud: Young’s double-slit interferometry within an atom, Phys Rev Lett 75, p.1252–1255 (1995)

    Article  ADS  Google Scholar 

  79. {Sect. 3.9.13} K.X. He, M. Curley, A. Williams, J.C. Wang: Visible light diffraction by a monolayer periodic array of UV laser dye Bis-MSB doped polystyrene spheres, Opt Commun 139, p.39–42 (1997)

    Article  ADS  Google Scholar 

  80. {Sect. 3.9.16} M.A. Muriel, A. Carballar, J. Azana: Field distributions inside fiber gratings, IEEE J QE-35, p.548–558 (1999)

    Article  Google Scholar 

  81. {Sect. 3.9.16} N.C.R. Holme, L. Nikolova, P.S. Ramanujam, S. Hvilsted: An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester, Appl Phys Lett 70, p.1518–1520 (1997)

    Article  ADS  Google Scholar 

  82. {Sect. 3.9.16} G.I. Greisukh, S.T. Bobrov, S.A. Stepanov: Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Optical Engineering Press, Bellingham, 1997); J. Turunen, F.Wyrowski: Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997)

    Google Scholar 

  83. {Sect. 3.9.16} H.J. Eichler, P. Günter, D.W. Pohl: Laser-Induced Dynamic Gratings, Springer Ser. Opt. Sci, Vol. 50 (Springer, Berlin, Heidelberg, New York, Tokyo 1986)

    Google Scholar 

  84. {Sect. 3.10} I.V. Fedotov, A.B. Fedotov, A.M. Zheltikov: Raman-resonanceenhanced composite nonlinearity of air-guided modes in hollow photoniccrystal fibers, Optics Letters 31, p.2604–2606 (2006)

    Article  ADS  Google Scholar 

  85. {Sect. 3.10} F.G. Omenetto, N.A. Wolchover, M.R. Wehner, M. Ross, A. Efimov, A.J. Taylor, V.V.R.K. Kumar, A.K. George, J.C. Knight, N.Y. Joly, P.S.J. Russell: Spectrally smooth supercontinuum from 350 nm to 3 mu m in subcentimeter lengths of soft-glass photonic crystal fibers, Opt Express 14, p.4928–4934 (2006)

    Article  ADS  Google Scholar 

  86. {Sect. 3.10} L. Lavoute, P. Roy, A. DesfargesBerthelemot, V. Kermene, S. Février: Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration, Opt Express 14, p.2994–2999 (2006)

    Article  ADS  Google Scholar 

  87. {Sect. 3.10} M.L. Hu, C.Y. Wang, Y.F. Li, L. Chai, A.M. Zheltikov: Tunable supercontinuum generation in a high-index-step photoniccrystal fiber with a comma-shaped core, Opt Express 14, p. 1942–1950 (2006)

    Article  ADS  Google Scholar 

  88. {Sect. 3.10} A.B. Fedotov, E.E. Serebryannikov, A.A. Ivanov, A.M. Zheltikov: Spectral transformation of femtosecond Cr:forsterite laser pulses in a flint-glass photonic-crystal fiber, Appl Opt 45, p.6823–6830 (2006)

    Article  ADS  Google Scholar 

  89. {Sect. 3.10} H. Dobb, D.J. Webb, K. Kalli, A. Argyros, M.C.J. Large, M.A. vanEijkelenborg: Continuous wave ultraviolet light-induced fiber Bragg gratings in few-and single-mode microstructured polymer optical fibers, Optics Letters 30, p.3296–3298 (2005)

    Article  ADS  Google Scholar 

  90. {Sect. 3.10} W.S. Wong, X. Peng, J.M. McLaughlin, L. Dong: Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers, Optics Letters 30, p.2855–2857 (2005)

    Article  ADS  Google Scholar 

  91. {Sect. 3.10} A. Fuerbach, P. Steinvurzel, J.A. Bolger, A. Nulsen, B.J. Eggleton: Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers, Optics Letters 30, p.830–832 (2005)

    Article  ADS  Google Scholar 

  92. {Sect. 3.10} A.D. Galea, F. Couny, S. Coupland, P.J. Roberts, H. Sabert, J.C. Knight, T.A. Birks, P.S.J. Russell: Selective mode excitation in hollowcore photonic crystal fiber, Optics Letters 30, p.717–719 (2005)

    Article  ADS  Google Scholar 

  93. {Sect. 3.10} C.J.S. deMatos, R.E. Kennedy, S.V. Popov, J.R. Taylor: 20-kW peak power all-fiber 1.57-mu m source based on compression in air-core photonic bandgap fiber, its frequency doubling, and broadband generation from 430 to 1450 nm, Optics Letters 30, p.436–438 (2005)

    Article  ADS  Google Scholar 

  94. {Sect. 3.10} P. Glas, D. Fischer, M. Moenster, G. Steinmeyer, R. Iliew, C. Etrich, M. Kreitel, L.E. Nilsson, R. Koppler: Large-mode-area Nd-doped single-transverse-mode dual-wavelength microstructure fiber laser, Opt Express 13, p.7884–7892 (2005)

    Article  ADS  Google Scholar 

  95. {Sect. 3.10} S.M. Kobtsev, S.V. Smirnov: Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump, Opt Express 13, p.6912–6918 (2005)

    Article  ADS  Google Scholar 

  96. {Sect. 3.10} A. Huttunen, P. Torma: Effect of wavelength dependence of nonlinearity, gain, and dispersion in photonic crystal fiber amplifiers, Opt Express 13, p.4286–4295 (2005)

    Article  ADS  Google Scholar 

  97. {Sect. 3.10} H.C. Nguyen, B.T. Kuhlmey, E.C. Mgi, M.C. Steel, P. Domachuk, C.L. Smith, B.J. Eggelton: Tapered photonic crystal fibres: properties, characterisation and applications, Appl. Phys. B 81, p.377–387 (2005)

    ADS  Google Scholar 

  98. {Sect. 3.10} R. George, J.A. Harrington: Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings, Appl Opt 44, p.6449–6455 (2005)

    Article  ADS  Google Scholar 

  99. {Sect. 3.10} T.V. Andersen, K.M. Hilligsoe, O.K. Nielsen, J. Thgersen, K.P. Hansen, S.R. Keiding, J.J. Larsen: Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths, Opt Express 12, p.4113–4122 (2004)

    Article  ADS  Google Scholar 

  100. {Sect. 3.10} N.A. Mortensen, M.D. Nielsen, J.R. Folkenberg, A. Petersson, H.R. Simonsen: Improved large-mode-area endlessly single-mode photonic crystal fibers, Optics Letters 28, p.393–395 (2003)

    Article  ADS  Google Scholar 

  101. {Sect. 3.10} M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, K. Nagasaka: Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure, J Opt Soc Am B Opt Physics 20, p.2002–2011 (2003)

    Article  ADS  Google Scholar 

  102. {Sect. 3.10} K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, B.R. Washburn, K. Weber, R.S. Windeier: Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber, Appl. Phys. B 77, p.269–277 (2003)

    Article  ADS  Google Scholar 

  103. {Sect. 3.10} D.G. Ouzounov, K.D. Moll, M.A. Foster, W.R. Zipfel, W.W. Webb, A.L. Gaeta: Delivery of nanojoule femtosecond pulses through largecore microstructured fibers, Optics Letters 27, p.1513–1515 (2002)

    Article  ADS  Google Scholar 

  104. {Sect. 3.10} J.H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T.M. Monro, D.J. Richardson: Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering, Optics Letters 27, p.927–929 (2002)

    Article  ADS  Google Scholar 

  105. {Sect. 3.10} J.H.V. Price, W. Belardi, T.M. Monro, A. Malinowski, A. Piper, D.J. Richardson: Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source, Opt Express 10, p.382–387 (2002)

    ADS  Google Scholar 

  106. {Sect. 3.10} A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev, L.A. Melnikov, V.I. Beloglazov, N.B. Skibina, A.V. Shcherbakov: Enhanced ((3))(X) interactions of unamplined femtosecond Cr: forsterite laser pulses in photonic-crystal fibers, J Opt Soc Am B Opt Physics 19, p.2183–2190 (2002)

    Article  ADS  Google Scholar 

  107. {Sect. 3.10} A.B. Fedotov, A.N. Naumov, A.M. Zheltikov, I. Bugar, D. Chorvat, D. Chorvat, A.P. Tarasevitch von der Linde: Frequency-tunable supercontinuum generation in photonic-crystal fibers by femtosecond pulses of an optical parametric amplifier, J Opt Soc Am B Opt Physics 19, p.2156–2164 (2002)

    Article  ADS  Google Scholar 

  108. {Sect. 3.10} W.J. Wadsworth, A. OrtigosaBlanch, J.C. Knight, T.A. Birks, T.P.M. Man, P.S. Russell: Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, J Opt Soc Am B Opt Physics 19, p.2148–2155 (2002)

    Article  ADS  Google Scholar 

  109. {Sect. 3.10} G. Millot, J.M. Dudley: Polarization-mode dispersion measurements in high-birefringence fibers by means of stimulated Raman scattering, Appl Opt 41, p.2589–2591 (2002)

    Article  ADS  Google Scholar 

  110. {Sect. 3.10} S. Mohri, T. Kasai, Y. Abe, Y.W. Shi, Y. Matsuura, M. Miyagi: Optical properties of end-sealed hollow fibers, Appl Opt 41, p.1251–1255 (2002)

    Article  ADS  Google Scholar 

  111. {Sect. 3.10} M.A. van Eijkelenborg, C.J. Large M, A. Argyros, J. Zagari, S. Manos, N.A. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C.M. de Sterke, N.A. Nicorovici: P Microstructured polymer optical fibre, Optics Express 9, p.319–327 (2001)

    Article  ADS  Google Scholar 

  112. {Sect. 3.11} W.V. Meyer, A.E. Smart, R.G.W. Brown: Photon correlation and scattering: introduction to the feature issue, Appl Opt 40, p.3965–3968 (2001)

    Article  ADS  Google Scholar 

  113. {Sect. 3.11} M.C. Jermy, A. Allen: Simulating the effects of multiple scattering on images of dense sprays and particle fields, Appl Opt 41, p.4188–4196 (2002)

    Article  ADS  Google Scholar 

  114. {Sect. 3.11.0} F. Rachet, M. Chrysos, C. GuillotNoel, Y. LeDuff: Unique case of highly polarized collision-induced light scattering: The very far spectral wing by the helium pair, Phys Rev Lett 84, p.2120–2123 (2000)

    Article  ADS  Google Scholar 

  115. {Sect. 3.11.0} R.L. Murry, J.T. Fourkas, W.X. Li, T. Keyes: Mechanisms of light scattering in supercooled liquids, Phys Rev Lett 83, p.3550–3553 (1999)

    Article  ADS  Google Scholar 

  116. {Sect. 3.11.0} G.N. Constantinides, D. Gintides, S.E. Kattis, K. Kiriaki, C.A. Paraskeva, A.C. Payatakes, D. Polyzos, S.V. Tsinopoulos, S.N. Yannopoulos: Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results, Appl Opt 37, p.7310–7319 (1998)

    Article  ADS  Google Scholar 

  117. {Sect. 3.11.0} D.D. Meyerhofer: High-intensity-laser-electron scattering, IEEE J QE-33, p.1935–1941 (1997)

    Article  Google Scholar 

  118. {Sect. 3.11.0} F.V. Hartemann, A.K. Kerman: Classical theory of nonlinear compton scattering, Phys Rev Lett 76, p.624–627 (1996)

    Article  ADS  Google Scholar 

  119. {Sect. 3.11.0} A. Kienle, M.S. Patterson, L. Ott, R. Steiner: Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids including blood, Appl Opt 35, p.3404–3412 (1996)

    Article  ADS  Google Scholar 

  120. {Sect. 3.11.0} J.D. McKinney, M.A. Webster, K.J. Webb, A.M. Weiner: Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source, Optics Letters 25, p.4–6 (2000)

    Article  ADS  Google Scholar 

  121. {Sect. 3.11.0} L.L. Gurdev, T.N. Dreischuh, D.V. Stoyanov: Pulse backscattering tomography based on lidar principle, Opt Commun 151, p.339–352 (1998)

    Article  ADS  Google Scholar 

  122. {Sect. 3.11.0} R. Weber, G. Schweiger: Photon correlation spectroscopy on flowing polydisperse fluid-particle systems: theory, Appl Opt 37, p.4039–4050 (1998)

    Article  ADS  Google Scholar 

  123. {Sect. 3.11.0} G.L. Fischer, R.W. Boyd, T.R. Moore, J.E. Sipe: Nonlinear-optical Christiansen filter as an optical power limiter, Optics Letters 21, p.1643–1645 (1996)

    Article  ADS  Google Scholar 

  124. {Sect. 3.11.1} M.Y. Sfeir, F. Wang, L.M. Huang, C.C. Chuang, J. Hone, S.P. OBrien, T.F. Heinz, L.E. Brus: Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering, Science 306, p.1540–1543 (2004)

    Article  ADS  Google Scholar 

  125. {Sect. 3.11.1} J.A. Sutton, J.F. Driscoll: Rayleigh scattering cross sections of combustion species at 266, 355, and 532 nm for thermometry applications, Optics Letters 29, p.2620–2622 (2004)

    Article  ADS  Google Scholar 

  126. {Sect. 3.11.0} D.B. Brayton: Small Particle Signal Characteristics of a Dual-Scatter Laser Velocimeter, Appl. Opt. 13, p.2346–2351 (1974)

    Article  ADS  Google Scholar 

  127. {Sect. 3.11.1} H. Naus, W. Ubachs: Experimental verification of Rayleigh scattering cross sections, Optics Letters 25, p.347–349 (2000)

    Article  ADS  Google Scholar 

  128. {Sect. 3.11.1} F. Benabid, M. Notcutt, L. Ju, D.G. Blair: Rayleigh scattering in sapphire test mass for laser interferometric gravitational-wave detectors: II: Rayleigh scattering induced noise in a laser interferometric-wave detector, Opt Commun 170, p.9–14 (1999)

    Article  ADS  Google Scholar 

  129. {Sect. 3.11.1} J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz: Secondharmonic Rayleigh scattering from a sphere of centrosymmetric material, Phys Rev Lett 83, p.4045–4048 (1999)

    Article  ADS  Google Scholar 

  130. {Sect. 3.11.1} C.C. Hsu, T.H. Huang, S. Liu, F.F. Yeh, B.Y. Jin, J.A. Sattigeri, C.W. Shiau, T.Y. Luh: Conformation of substituted poly-norbornene polymers studied by hyperRayleigh scattering at 1064 nm, Chem Phys Lett 311, p.355–361 (1999)

    Article  ADS  Google Scholar 

  131. {Sect. 3.11.1} R.H.C. Janssen, D.N. Theodorou, S. Raptis, M.G. Papadopoulos: Molecular simulation of static hyper-Rayleigh scattering: A calculation of the depolarization ratio and the local fields for liquid nitrobenzene, J Chem Phys 111, p.9711–9719 (1999)

    Article  ADS  Google Scholar 

  132. {Sect. 3.11.1} P. Kaatz, D.P. Shelton: Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering, J Opt Soc Am B Opt Physics 16, p.998–1006 (1999)

    Article  ADS  Google Scholar 

  133. {Sect. 3.11.1} J.N. Woodford, C.H. Wang, A.E. Asato, R.S.H. Liu: Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907 nm, J Chem Phys 111, p.4621–4628 (1999)

    Article  ADS  Google Scholar 

  134. {Sect. 3.11.1} S.N. Yaliraki, R.J. Silbey: Hyper-Rayleigh scattering of centrosymmetric molecules in solution, J Chem Phys 111, p.1561–1568 (1999)

    Article  ADS  Google Scholar 

  135. {Sect. 3.11.1} S. Inouye, A.P. Chikkatur, D.M. StamperKurn, J. Stenger, D.E. Pritchard, W. Ketterle: Superradiant Rayleigh scattering from a BoseEinstein condensate, Science 285, p.571–574 (1999)

    Article  Google Scholar 

  136. {Sect. 3.11.1} M. Froggatt, J. Moore: High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter, Appl Opt 37, p.1735–1740 (1998)

    Article  ADS  Google Scholar 

  137. {Sect. 3.11.1} B.W.J. McNeil, G.R.M. Robb: Collective Rayleigh scattering from dielectric particles: a classical theory of the collective atomic recoil laser, Opt Commun 148, p.54–58 (1998)

    Article  ADS  Google Scholar 

  138. {Sect. 3.11.1} C. Desmet, V. Gusev, W. Lauriks, C. Glorieux, J. Thoen: All-optical excitation and detection of leaky Rayleigh waves, Optics Letters 22, p.69–71 (1997)

    Article  ADS  Google Scholar 

  139. {Sect. 3.11.1} S.F. Hubbard, R.G. Petschek, K.D. Singer: Spectral content and dispersion of hyper-Rayleigh scattering, Optics Letters 21, p.1774–1776 (1996)

    Article  ADS  Google Scholar 

  140. {Sect. 3.11.1} O.F.J. Noordman, N.F. Vanhulst: Time-resolved hyper-Rayleigh scattering: Measuring first hyperpolarizabilities beta of fluorescent molecules, Chem Phys Lett 253, p.145–150 (1996)

    Article  ADS  Google Scholar 

  141. {Sect. 3.11.1} S.L. Shapiro, H.P. Broida: Light Scattering from Fluctuations in Orientations of CS2 in Liquids, Phys. Rev. 154, p.129–138 (1967)

    Article  ADS  Google Scholar 

  142. {Sect. 3.11.1} I.P. Batra, R.H. Enns: Stimulated Thermal Rayleigh Scattering in Liquids, Phys. Rev. 185, p.396–399 (1969)

    Article  ADS  Google Scholar 

  143. {Sect. 3.11.2} K.L. vanderMolen, P. Zijlstra, A. Lagendijk, A.P. Mosk: Laser threshold of Mie resonances, Optics Letters 31, p.1432–1434 (2006)

    Article  ADS  Google Scholar 

  144. {Sect. 3.11.2} G. Gouesbet: Asymptotic quantum elastic generalized Lorenz-Mie theory, Opt Commun 266, p.704–709 (2006)

    Article  ADS  Google Scholar 

  145. {Sect. 3.11.2} S.V. Fomichev, S.V. Popruzhenko, D.F. Zaretsky, W. Becker: Nonlinear excitation of the Mie resonance in a laser-irradiated cluster, Opt Express 11, p.2433–2439 (2003)

    Article  ADS  Google Scholar 

  146. {Sect. 3.11.2} H. Polaert, G. Gouesbet, G. Grehan: Laboratory determination of beam-shape coefficients for use in generalized Lorenz-Mie theory, Appl Opt 40, p.1699–1706 (2001)

    Article  ADS  Google Scholar 

  147. {Sect. 3.11.2} M. Bass (ed.): Handbook of Optics, Vol. I, chapter 44 (McGraw-Hill, New York, 1995)

    Google Scholar 

  148. {Sect. 3.11.2} M. Alexander, F.R. Hallett: Small-angle light scattering: instrumental design and application to particle sizing, Appl Opt 38, p.4158–4163 (1999)

    Article  ADS  Google Scholar 

  149. {Sect. 3.11.2} I. Delfino, M. Lepore, P.L. Indovina: Experimental tests of different solutions to the diffusion equation for optical characterization of scattering media by time-resolved transmittance, Appl Opt 38, p.4228–4236 (1999)

    Article  ADS  Google Scholar 

  150. {Sect. 3.11.2} N.M. Sijtsema, R.A.L. Tolboom, N.J. Dam, J.J. terMeulen: Two-dimensional multispecies imaging of a supersonic nozzle flow, Optics Letters 24, p.664–666 (1999)

    Article  ADS  Google Scholar 

  151. {Sect. 3.11.2} M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb: Single scattering by red blood cells, Appl Opt 37, p.7410–7418 (1998)

    Article  ADS  Google Scholar 

  152. {Sect. 3.11.2} M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg: Electromagnetic energy transport via linear chains of silver nanoparticles, Optics Letters 23, p.1331–1333 (1998)

    Article  ADS  Google Scholar 

  153. {Sect. 3.11.2} A. Doicu, T. Wriedt: Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions, Appl Opt 36, p.2971–2978 (1997)

    Article  ADS  Google Scholar 

  154. {Sect. 3.11.2} Z.L. Jiang: Phase maps based on the Lorenz-Mie theory to optimize phase Doppler particle-sizing systems, Appl Opt 36, p.1367–1375 (1997)

    Article  ADS  Google Scholar 

  155. {Sect. 3.11.2} J. Kasparian, B. Kramer, J.P. Dewitz, S. Vajda, P. Rairoux, B. Vezin, V. Boutou, T. Leisner, W. Hubner, J.P. Wolf, et al.: Angular dependences of third harmonic generation from microdroplets, Phys Rev Lett 78, p.2952–2955 (1997)

    Article  ADS  Google Scholar 

  156. {Sect. 3.11.2} G. Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 25, p.377–444 (1908)

    Article  Google Scholar 

  157. {Sect. 3.11.4} P. J. Hendra, J.K. Agbenyega: The Raman Spectra of Polymers (John Wiley & Sons, Chichester, 1994)

    Google Scholar 

  158. {Sect. 3.11.4} D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, Boston, San Diego, New York, 1991)

    Google Scholar 

  159. {Sect. 3.11.4} D.J. Gardiner, P.R. Grawes: Practical Raman Spectroscopy (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  160. {Sect. 3.11.4} R.J.H. Clark, R.E. Hester (eds.): Advances in Infrared and Raman Spectroscopy, Vols. 1–10 (Heyden, London 1972–1985)

    Google Scholar 

  161. {Sect. 3.11.4} A. Wehr: High-resolution rotational Raman Spectra of gases (in A. Weber (ed.): Raman Spectroscopy of Gases and Liquids, Topics Curr. Phys, Vol. 11 (Springer Berlin, Heidelberg 1979)

    Google Scholar 

  162. {Sect. 3.11.4} G. Herzberg: Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra (Van Nostrand Reinhold, New York, 1945)

    Google Scholar 

  163. {Sect. 3.11.4} A.A. Sirenko, I.A. Akimov, J.R. Fox, A.M. Clark, H.C. Li, W.D. Si, X.X. Xi: Observation of the first-order Raman scattering in SrTiO3 thin films, Phys Rev Lett 82, p.4500–4503 (1999)

    Article  ADS  Google Scholar 

  164. {Sect. 3.11.4} N.V. Surovtsev, J. Wiedersich, V.N. Novikov, E. Rossler, E. Duval: q dependence of low-frequency Raman scattering in silica glass, Phys Rev Lett 82, p.4476–4479 (1999)

    Article  ADS  Google Scholar 

  165. {Sect. 3.11.4} K. Wakabayashi, K.G. Nakamura, K. Kondo, M. Yoshida: Time-resolved Raman spectroscopy of polytetrafluoroethylene under laserdriven shock compression, Appl Phys Lett 75, p.947–949 (1999)

    Article  ADS  Google Scholar 

  166. {Sect. 3.11.4} C. Didierjean, V. DeWaele, G. Buntinx, O. Poizat: The structure of the lowest excited singlet (S-1) state of 4,4′-bipyridine: a picosecond time-resolved Raman analysis, Chem Phys 237, p. 169–181 (1998)

    Article  Google Scholar 

  167. {Sect. 3.11.4} F. Rabenstein, A. Leipertz: One-dimensional, time-resolved Raman measurements in a sooting flame made with 355-nm excitation, Appl Opt 37, p.4937–4943 (1998)

    Article  ADS  Google Scholar 

  168. {Sect. 3.11.4} X.F. Wang, R. Fedosejevs, G.D. Tsakiris: Observation of Raman scattering and hard X-rays in short pulse laser interaction with high density hydrogen gas, Opt Commun 146, p.363–370 (1998)

    Article  ADS  Google Scholar 

  169. {Sect. 3.11.4} H. Huang, S.Q. Li: Vibrational Raman spectrum of a degenerate Boson gas, Opt Commun 144, p.331–339 (1997)

    Article  ADS  Google Scholar 

  170. {Sect. 3.11.4} E. Takahashi, Y. Matsumoto, K. Kuwahara, I. Matsushima, I. Okuda, Y. Owadano: Short Stokes pulse generation by mixed Raman gas, Opt Commun 136, p.429–432 (1997)

    Article  ADS  Google Scholar 

  171. {Sect. 3.11.4} K. van Helvoort, R. Fantoni, W.L. Meerts, J. Reuss: Internal rotation in CH3CD3: Raman spectroscopy of torsional overtones, Chem. Phys. Lett. 128, p.494–500 (1986)

    Article  ADS  Google Scholar 

  172. {Sect. 3.11.4} W. Knippers, K. Van Helvoort, S. Stolte: Vibrational overtones of the homonuclear diatomics N2, O2, D2 observed by the spontaneous Raman effect, Chem. Phys. Lett 121, p.279–286 (1985)

    Article  ADS  Google Scholar 

  173. {Sect. 3.11.4} H. W. Schrötter, J. Bofilias: On the assignment of the secondorder lines in the Raman spectrum of benzene, J. Mol. Struct. 3, p.242–244 (1969)

    Article  ADS  Google Scholar 

  174. {Sect. 3.11.4} M. Katsuragawa, K. Hakuta: Raman gain measurement in solid parahydrogen, Optics Letters 25, p.177–179 (2000)

    Article  ADS  Google Scholar 

  175. {Sect. 3.11.4} S. Hadrich, S. Hefter, B. Pfelzer, T. Doerk, P. Jauernik, J. Uhlenbusch: Determination of the absolute Raman cross section of methyl, Chem Phys Lett 256, p.83–86 (1996)

    Article  ADS  Google Scholar 

  176. {Sect. 3.11.4} N.D. Finkelstein, A.P. Yalin, W.R. Lempert, R.B. Miles: Dispersion filter for spectral and spatial resolution of pure rotational Raman scattering, Optics Letters 23, p.1615–1617 (1998)

    Article  ADS  Google Scholar 

  177. {Sect. 3.11.4} H. Yamamoto, H. Uenoyama, K. Hirai, X. Dou, Y. Ozaki: Quantitative analysis of metabolic gases by multichannel Raman spectroscopy: use of a newly designed elliptic-spherical integration type of cell holder, Appl Opt 37, p.2640–2645 (1998)

    Article  ADS  Google Scholar 

  178. {Sect. 3.11.4} J. Bendtsen, F. Rasmussen, S. Brodersen: Fourier-transform instrument for high-resolution Raman spectroscopy of gases, Appl Opt 36, p.5526–5534 (1997)

    Article  ADS  Google Scholar 

  179. {Sect. 3.11.4} N.D. Finkelstein, W.R. Lempert, R.B. Miles: Narrowlinewidth passband filter for ultraviolet rotational Raman imaging, Optics Letters 22, p.537–539 (1997)

    Article  ADS  Google Scholar 

  180. {Sect. 3.11.4} D.F. Marran, J.H. Frank, M.B. Long, S.H. Starner, R.W. Bilger: Intracavity technique for improved Raman/Rayleigh imaging in flames, Optics Letters 20, p.791–793 (1995)

    Article  ADS  Google Scholar 

  181. {Sect. 3.11.4} B. Schrader: Special techniques and applications, in Infrared and Raman Spectroscopy (VCH, Weinheim 1993)

    Google Scholar 

  182. {Sect. 3.11.5} H. Schwoerer, B. Liesfeld, H.P. Schienvoigt, K.U. Amthor, R. Sauerbrey: Thomson-backscattered x rays from laser-accelerated electrons — art. no. 014802, Phys Rev Lett 9601, p.4802 (2006)

    Google Scholar 

  183. {Sect. 3.11.5} M. Babzien, I. BenZvi, K. Kusche, I.V. Pavlishin, I.V. Pogorelsky, D.P. Siddons, V. Yakimenko, D. Cline, F. Zhou, T. Hirose, Y. Kamiya, T. Kumita, T. Omori, J. Urakawa, K. Yokoya: Observation of the second harmonic in Thomson scattering from relativistic electrons — art. no. 054802, Phys Rev Lett 9605, p.4802 (2006)

    Google Scholar 

  184. {Sect. 3.11.5} T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M. Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito, J. Urakawa, M. Washio, I. Yamazaki: Efficient propagation of polarization from laser photons to positrons through compton scattering and electron-positron pair creation — art. no. 114801, Phys Rev Lett 9611, p.4801 (2006)

    Google Scholar 

  185. {Sect. 3.11.5} D.B. Blaschke, A.V. Prozorkevich, C.D. Roberts, S.M. Schmidt, S.A. Smolyansky: Pair production and optical lasers — art. no. 140402, Phys Rev Lett 9614, p.402 (2006)

    Google Scholar 

  186. {Sect. 3.11.5} N.M. Lawandy: Scattering of vacuum states by dynamic plasmon singularities: generating photons from vacuum, Optics Letters 31, p.3650–3652 (2006)

    Article  ADS  Google Scholar 

  187. {Sect. 3.11.5} K. Lee, Y.H. Cha, M.S. Shin, B.H. Kim, D. Kim: Temporal and spatial characterization of harmonics structures of relativistic nonlinear Thomson scattering, Opt Express 11, p.309–316 (2003)

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Linear Interactions Between Light and Matter. In: Photonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45158-7_3

Download citation

Publish with us

Policies and ethics