Skip to main content

Adapting (Pseudo)-Triangulations with a Near-Linear Number of Edge Flips

  • Conference paper
Algorithms and Data Structures (WADS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2748))

Included in the following conference series:

Abstract

In geometric data processing, structures that partition the geometric input, as well as connectivity structures for geometric objects, play an important role. A versatile tool in this context are triangular meshes, often called triangulations; see e.g., the survey articles [6, 12, 5]. A triangulation of a finite set S of points in the plane is a maximal planar straight-line graph that uses all and only the points in S as its vertices. Each face in a triangulation is a triangle spanned by S. In the last few years, a relaxation of triangulations, called pseudo-triangulations (or geodesic triangulations), has received considerable attention. Here, faces bounded by three concave chains, rather than by three line segments, are allowed. The scope of applications of pseudo-triangulations as a geometric data stucture ranges from ray shooting [10, 14] and visibility [25, 26] to kinetic collision detection [1, 21, 22], rigidity [32, 29, 15], and guarding [31]. Still, only very recently, results on the combinatorial properties of pseudo-triangulations have been obtained. These include bounds on the minimal vertex and face degree [20] and on the number of possible pseudo-triangulations [27, 3]. The usefulness of (pseudo-)triangulations partially stems from the fact that these structures can be modified by constant-size combinatorial changes, commonly called flip operations. Flip operations allow for an adaption to local requirements, or even for generating globally optimal structures [6, 12]. A classical result states that any two triangulations of a given planar point set can be made to coincide by applying a quadratic number of edge flips; see e.g. [16, 19]. A similar result has been proved recently for the class of minimum pseudo-triangulations [8, 29].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Basch, J., Guibas, L.J., Hershberger, J., Zhang, L.: Deformable free space tilings for kinetic collision detection. In: Donald, B.R., Lynch, K., Rus, D. (eds.) Algorithmic and Computational Robotics: New Directions (Proc. 5th Workshop Algorithmic Found. Robotics), pp. 83–96 (2001)

    Google Scholar 

  2. Aichholzer, O., Aurenhammer, F., Brass, P., Krasser, H.: Spatial embedding of pseudo-triangulations. In: Proc. 19th Ann. ACM Sympos. Computational Geometry (2003) (to appear)

    Google Scholar 

  3. Aichholzer, O., Aurenhammer, F., Krasser, H., Speckmann, B.: Convexity minimizes pseudo-triangulations. In: Proc. 14th Canadian Conf. Computational Geometry 2002, pp. 158–161 (2002)

    Google Scholar 

  4. Aichholzer, O., Hoffmann, M., Speckmann, B., Tóth, C.D.: Degree bounds for constrained pseudo-triangulations. Manuscript, Institute for Theoretical Computer Science, Graz University of Technology, Austria (2003)

    Google Scholar 

  5. Aurenhammer, F., Xu, Y.-F.: Optimal triangulations. In: Pardalos, P.M., Floudas, C.A. (eds.) Encyclopedia of Optimization 4, pp. 160–166. Kluwer Academic Publishing, Dordrecht (2000)

    Google Scholar 

  6. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Du, D.-Z., Hwang, F. (eds.) Computing in Euclidean Geometry. Lecture Notes Series on Computing, vol. 4, pp. 47–123. World Scientific, Singapore (1995)

    Google Scholar 

  7. Bespamyatnikh, S.: Transforming pseudo-triangulations. Manuscript, Dept. Comput. Sci., University of Texas at Dallas (2003)

    Google Scholar 

  8. Brönnimann, H., Kettner, L., Pocchiola, M., Snoeyink, J.: Counting and enumerating pseudo-triangulations with the greedy flip algorithm (2001) (manuscript)

    Google Scholar 

  9. Chazelle, B.: A theorem on polygon cutting with applications. In: Proc. 23rd IEEE Symp. FOCS pp. 339–349 (1982)

    Google Scholar 

  10. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12, 54–68 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular triangulations. Algorithmica 15, 223–241 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Du, D.-Z., Hwang, F. (eds.) Computing in Euclidean Geometry. Lecture Notes Series on Computing, vol. 4, pp. 225–265. World Scientific, Singapore (1995)

    Google Scholar 

  13. Friedman, J., Hershberger, J., Snoeyink, J.: Efficiently planning compliant motion in the plane. SIAM J. Computing 25, 562–599 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goodrich, M.T., Tamassia, R.: Dynamic ray shooting and shortest paths in planar subdivisions via balanced geodesic triangulations. J. Algorithms 23, 51–73 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., Whiteley, W.: Planar minimally rigid graphs and pseudo-triangulations. In: Proc. 19th Ann. ACM Sympos. Computational Geometry (to appear)

    Google Scholar 

  16. Hanke, S., Ottmann, T., Schuierer, S.: The edge-flipping distance of triangulations. Journal of Universal Computer Science 2, 570–579 (1996)

    MathSciNet  Google Scholar 

  17. Hershberger, J.: An optimal visibility graph algorithm for triangulated simple polygons. Algorithmica 4, 141–155 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huemer, C.: Master Thesis, Institute for Theoretical Computer Science, Graz University of Technology, Austria (2003)

    Google Scholar 

  19. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete & Computational Geometry 22, 333–346 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kettner, L., Kirkpatrick, D., Mantler, A., Snoeyink, J., Speckmann, B., Takeuchi, F.: Tight degree bounds for pseudo-triangulations of points. Computational Geometry: Theory and Applications 25, 3–12 (2003)

    MATH  MathSciNet  Google Scholar 

  21. Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic collision detection for simple polygons. Intern. J. Computational Geometry & Applications 12, 3–27 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kirkpatrick, D., Speckmann, B.: Kinetic maintenance of context-sensitive hierarchical representations for disjoint simple polygons. In: Proc. 18th Ann. ACM Sympos. Computational Geometry, pp. 179–188 (2002)

    Google Scholar 

  23. Lawson, C.L.: Properties of n-dimensional triangulations. Computer Aided Geometric Design 3, 231–246 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Orden, D., Santos, F.: The polyhedron of non-crossing graphs on a planar point set. Manuscript, Universidad de Cantabria, Santander, Spain (2002)

    Google Scholar 

  25. Pocchiola, M., Vegter, G.: Minimal tangent visibility graphs. Computational Geometry: Theory and Applications 6, 303–314 (1996)

    MATH  MathSciNet  Google Scholar 

  26. Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudotriangulations. Discrete & Computational Geometry 16, 419–453 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Randall, D., Rote, G., Santos, F., Snoeyink, J.: Counting triangulations and pseudotriangulations of wheels. In: Proc. 13th Canadian Conf. Computational Geometry 2001, pp. 117–120 (2001)

    Google Scholar 

  28. Rajan, V.T.: Optimality of the Delaunay triangulation in R d. Discrete & Computational Geometry 12, 189–202 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rote, G., Santos, F., Streinu, I.: Expansive motions and the polytope of pointed pseudo-triangulations. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete & Computational Geometry – The Goodman-Pollack Festschrift. Algorithms and Combinatorics, pp. 699–736. Springer, Berlin (2003)

    Google Scholar 

  30. Rote, G., Wang, C.A., Wang, L., Xu, Y.: On constrained minimum pseudotriangulations. Manuscript, Inst. f. Informatik, FU-Berlin (2002)

    Google Scholar 

  31. Speckmann, B., Toth, C.D.: Allocating vertex π-guards in simple polygons via pseudo-triangulations. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 109–118 (2003)

    Google Scholar 

  32. Streinu, I.: A combinatorial approach to planar non-colliding robot arm motion planning. In: Proc. 41st IEEE Symp. FOCS, pp. 443–453 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aichholzer, O., Aurenhammer, F., Krasser, H. (2003). Adapting (Pseudo)-Triangulations with a Near-Linear Number of Edge Flips. In: Dehne, F., Sack, JR., Smid, M. (eds) Algorithms and Data Structures. WADS 2003. Lecture Notes in Computer Science, vol 2748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45078-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45078-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40545-0

  • Online ISBN: 978-3-540-45078-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics