Skip to main content

Unifying Aspects of Light- and Heavy-Systems

  • Part II Modelling QCD
  • Chapter
  • First Online:
Heavy Quark Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 647))

Abstract

Dyson-Schwinger equations furnish a Poincaré covariant framework within which to study hadrons. A particular feature is the existence of a nonperturbative, symmetry preserving truncation that enables the proof of exact results. Key to the DSE’s efficacious application is their expression of the materially important momentum-dependent dressing of parton propagators at infrared length-scales, which is responsible for the magnitude of constituent-quark masses and the length-scale characterising confinementin bound states. A unified quantitative description of light- and heavy-quark systems is achieved by capitalising on these features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. C.D. Roberts and A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994).

    Google Scholar 

  • 2. C.D. Roberts and S.M. Schmidt, Prog. Part. Nucl. Phys. 45, S1 (2000).

    Google Scholar 

  • 3. R. Alkofer and L.v. Smekal, Phys. Rept. 353, 281 (2001).

    Google Scholar 

  • 4. P. Maris and C.D. Roberts, “Dyson-Schwinger equations: A tool for hadron physics,” nucl-th/0301049.

    Google Scholar 

  • 5. P. Maris, C.D. Roberts and P.C. Tandy, Phys. Lett. B 420, 267 (1998). Rmrt98

    Google Scholar 

  • 6. P. Maris and C.D. Roberts, Phys. Rev. C 56, 3369 (1997).

    Google Scholar 

  • 7. P. Maris, A. Raya, C.D. Roberts and S.M. Schmidt, “Facets of confinement and dynamical chiral symmetry breaking,” nucl-th/0208071.

    Google Scholar 

  • 8. A. Bender, C.D. Roberts and L.v. Smekal, Phys. Lett. B 380, 7 (1996).

    Google Scholar 

  • 9. A. Bender, W. Detmold, C.D. Roberts and A.W. Thomas, Phys. Rev. C 65, 065203 (2002).

    Google Scholar 

  • 10. P. Maris and C.D. Roberts, “QCD bound states and their response to extremes of temperature and density.” In: Proc. of the Wkshp. on Nonperturbative Methods in Quantum Field Theory, Adelaide, Australia, 2-13 Feb., 1998, ed. by A.W. Schreiber, A.G. Williams and A.W. Thomas (World Scientific, Singapore 1998) pp. 132–151.

    Google Scholar 

  • 11. M.A. Ivanov, Yu.L. Kalinovsky and C.D. Roberts, Phys. Rev. D 60, 034018 (1999).

    Google Scholar 

  • 12. H.J. Munczek and A.M. Nemirovsky, Phys. Rev. D 28, 181 (1983).

    Google Scholar 

  • 13. C.H. Llewellyn-Smith, Annals Phys. (NY) 53, 521 (1969).

    Google Scholar 

  • 14. H.J. Munczek, Phys. Rev. D 52, 4736 (1995).

    Google Scholar 

  • 15. R.W. Haymaker, Riv. Nuovo Cim. 14N8, 1 (1991).

    Google Scholar 

  • 16. K.D. Lane, Phys. Rev. D 10, 2605 (1974); H.D. Politzer, Nucl. Phys. B 117, 397 (1976).

    Google Scholar 

  • 17. K. Langfeld, R. Pullirsch, H. Markum, C.D. Roberts and S.M. Schmidt, “Concerning the quark condensate,” nucl-th/0301024.

    Google Scholar 

  • 18. C.D. Roberts, “Continuum strong QCD: Confinement and Dynamical Chiral Symmetry Breaking,” nucl-th/0007054.

    Google Scholar 

  • 19. C. Alexandrou, P. De Forcrand and E. Follana, Phys. Rev. D 65, 117502 (2002); P.O. Bowman, U.M. Heller, D.B. Leinweber and A.G. Williams, Phys. Rev. D 66, 074505 (2002); and references therein.

    Google Scholar 

  • 20. J.C.R. Bloch, Phys. Rev. D 64, 116011 (2001).

    Google Scholar 

  • 21. R. Alkofer, C.S. Fischer and L.v. Smekal, Acta Phys. Slov. 52, 191 (2002).

    Google Scholar 

  • 22. J. Skullerud and A. Kızılersü, JHEP 0209, 013 (2002); J.I. Skullerud, P.O. Bowman, A. Kızılersü, D.B. Leinweber, A.G. Williams, “Nonperturbative structure of the quark-gluon vertex,” hep-ph/0303176.

    Google Scholar 

  • 23. J.C.R. Bloch, A. Cucchieri, K. Langfeld and T. Mendes, “Running coupling constant and propagators in SU(2) Landau gauge,” hep-lat/0209040.

    Google Scholar 

  • 24. P. Maris and P.C. Tandy, Phys. Rev. C 60, 055214 (1999).

    Google Scholar 

  • 25. L. Montanet, et al. [Part. Data Group Coll.], Phys. Rev. D 50, 1173 (1994); C. Caso et al. [Part. Data Group Coll.], Eur. Phys. J. C 3, 1 (1998).

    Google Scholar 

  • 26. P.O. Bowman, U.M. Heller and A.G. Williams, Phys. Rev. D 66, 014505 (2002).

    Google Scholar 

  • 27. K. Johnson, M. Baker and R. Willey, Phys. Rev. 136, B1111 (1964).

    Google Scholar 

  • 28. M.S. Bhagwat, M.A. Pichowsky, C.D. Roberts and P.C. Tandy, “Analysis of a quenched lattice-QCD dressed-quark propagator,” nucl-th/0304003.

    Google Scholar 

  • 29. P. Maris, “Continuum QCD and Light Mesons.” In: Wien 2000, Quark Confinement and the Hadron Spectrum — Proc. of the 4th Int. Conf., Vienna, Austria, 3-8 Jul 2000, ed. by W. Lucha and K. Maung Maung (World Scientific, Singapore 2002) pp. 163-175.

    Google Scholar 

  • 30. M.B. Hecht, C.D. Roberts and S.M. Schmidt, “Contemporary Applications of Dyson-Schwinger Equations.” In: Wien 2000, Quark Confinement and the Hadron Spectrum – Proc. of the 4th Int. Conf., Vienna, Austria, 3-8 Jul 2000, ed. by W. Lucha and K. Maung Maung (World Scientific, Singapore 2002) pp. 27-39.

    Google Scholar 

  • 31. K.C. Bowler, et al. [UKQCD Coll.], Phys. Rev. D 62, 054506 (2000).

    Google Scholar 

  • 32. P.C. Tandy, “Covariant QCD modeling of light meson physics,” nucl-th/0301040.

    Google Scholar 

  • 33. P. Maris and P.C. Tandy, Phys. Rev. C 61, 045202 (2000).

    Google Scholar 

  • 34. P. Maris and P.C. Tandy, Phys. Rev. C 62, 055204 (2000).

    Google Scholar 

  • 35. P. Brauel, et al., Z. Phys. C 3, 101 (1979).

    Google Scholar 

  • 36. S.R. Amendolia, et al. [NA7 Coll.], Nucl. Phys. B 277, 168 (1986).

    Google Scholar 

  • 37. J. Volmer, et al. [JLab F π Coll.], Phys. Rev. Lett. 86, 1713 (2001).

    Google Scholar 

  • 38. P. Maris, π N Newslett. 16, 213 (2002).

    Google Scholar 

  • 39. C.D. Roberts, Nucl. Phys. A 605, 475 (1996).

    Google Scholar 

  • 40. P. Maris and C.D. Roberts, Phys. Rev. C 58, 3659 (1998).

    Google Scholar 

  • 41. G.R. Farrar and D.R. Jackson, Phys. Rev. Lett. 43, 246 (1979).

    Google Scholar 

  • 42. G.P. Lepage and S.J. Brodsky, Phys. Rev. D 22, 2157 (1980).

    Google Scholar 

  • 43. M.S. Bhagwat, M.A. Pichowsky and P.C. Tandy, Phys. Rev. D 67, 054019 (2003).

    Google Scholar 

  • 44. S.R. Cotanch and P. Maris, Phys. Rev. D 66, 116010 (2002); P. Bicudo, Phys. Rev. C 67, 035201 (2003).

    Google Scholar 

  • 45. J. Praschifka, C.D. Roberts and R.T. Cahill, Phys. Rev. D 36, 209 (1987); C.D. Roberts, R.T. Cahill and J. Praschifka, Annals Phys. (NY) 188, 20 (1988).

    Google Scholar 

  • 46. M. Bando, M. Harada and T. Kugo, Prog. Theor. Phys. 91, 927 (1994).

    Google Scholar 

  • 47. R. Alkofer and C.D. Roberts, Phys. Lett. B 369, 101 (1996); B. Bistrović and D. Klabučar, Phys. Lett. B 478, 127 (2000).

    Google Scholar 

  • 48. P. Maris and P.C. Tandy, Phys. Rev. C 65, 045211 (2002).

    Google Scholar 

  • 49. E.S. Ackleh, T. Barnes and E.S. Swanson, Phys. Rev. D 54, 6811 (1996).

    Google Scholar 

  • 50. G.S. Adams et al. [E852 Coll.], Phys. Rev. Lett. 81, 5760 (1998). S.U. Chung et al., Phys. Rev. D 65, 072001 (2002).

    Google Scholar 

  • 51. C.J. Burden, Lu Qian, C.D. Roberts, P.C. Tandy and M.J. Thomson, Phys. Rev. C 55, 2649 (1997).

    Google Scholar 

  • 52. C.J. Burden and M.A. Pichowsky, Few Body Syst. 32, 119 (2002).

    Google Scholar 

  • 53. J.C.R. Bloch, Yu.L. Kalinovsky, C.D. Roberts and S.M. Schmidt, Phys. Rev. D 60, 111502 (1999).

    Google Scholar 

  • 54. M.A. Ivanov, Yu.L. Kalinovsky, P. Maris and C.D. Roberts, Phys. Lett. B 416, 29 (1998).

    Google Scholar 

  • 55. M.A. Ivanov, Yu.L. Kalinovsky, P. Maris and C.D. Roberts, Phys. Rev. C 57, 1991 (1998).

    Google Scholar 

  • 56. M. Neubert, Phys. Rep. 245, 259 (1994); M. Neubert, “Heavy quark masses, mixing angles, and spin flavor symmetry.” In: The Building Blocks of Creation: From Microfermis to Megaparsecs, Boulder, Colorado, 6/Jun - 2/Jul 1993, ed. by S. Raby and T. Walker (World Scientific, Singapore 1994) pp. 125-206; and references therein.

    Google Scholar 

  • 57. J.M. Flynn and C.T. Sachrajda, Adv. Ser. Direct. High Energy Phys. 15, 402 (1998).

    Google Scholar 

  • 58. C. McNeile, “Heavy quarks on the lattice,” hep-lat/0210026.

    Google Scholar 

  • 59. C.D. Roberts, Nucl. Phys. Proc. Suppl. 108, 227 (2002).

    Google Scholar 

  • 60. Yu.L. Kalinovsky, K.L. Mitchell and C.D. Roberts, Phys. Lett. B 399, 22 (1997); C.R. Ji and P. Maris, Phys. Rev. D 64, 014032 (2001).

    Google Scholar 

  • 61. H. Munczek, Phys. Lett. B 175, 215 (1986); C.J. Burden, C.D. Roberts and A.G. Williams, ibid 285, 347 (1992).

    Google Scholar 

  • 62. M.A. Pichowsky and T.-S.H. Lee, Phys. Lett. B 379, 1 (1996); M.A. Pichowsky and T.-S.H. Lee, Phys. Rev. D 56, 1644 (1997).

    Google Scholar 

  • 63. F.T. Hawes and M.A. Pichowsky, Phys. Rev. C 59, 1743 (1999).

    Google Scholar 

  • 64. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).

    Google Scholar 

  • 65. N. Isgur and M.B. Wise, Phys. Lett. B 232, 113 (1989); ibid B 237, 527 (1990).

    Google Scholar 

  • 66. The fitting used [25]: V ub =0.0033, V cd = 0.2205, V cs = 0.9745 and V cb = 0.039; and, in GeV, M ρ = 0.77, MK*=0.892 and, except in the kinematic factor λ(m12,m22,t) where the splittings are crucial, averaged D- and B-meson masses: m D = 1.99, m B =5.35 (from m D =1.87, m Ds =1.97, MD*=2.01, M Ds *=2.11, and m B =5.28, m Bs =5.37, MB*=5.32, M Bs *=5.42). Furthermore, b0u=0.131, b0s=0.105, b3u=0.185=b3s and ε = 10-4 were not varied, being instead fixed at the values determined in [67].

    Google Scholar 

  • 67. C.J. Burden, C.D. Roberts and M.J. Thomson, Phys. Lett. B 371, 163 (1996).

    Google Scholar 

  • 68. J.D. Richman and P.R. Burchat, Rev. Mod. Phys. 67, 893 (1995).

    Google Scholar 

  • 69. J.E. Duboscq et al. [CLEO Coll.], Phys. Rev. Lett. 76, 3898 (1996).

    Google Scholar 

  • 70. D.R. Burford, et al., [UKQCD Coll.], Nucl. Phys. B 447, 425 (1995).

    Google Scholar 

  • 71. V.M. Belyaev, V.M. Braun, A. Khodjamirian and R. Rückl, Phys. Rev. D 51, 6177 (1995).

    Google Scholar 

  • 72. A. Anastassov et al. [CLEO Coll.], Phys. Rev. D 65, 032003 (2002).

    Google Scholar 

  • 73. W.R. Molzon et al., Phys. Rev. Lett. 41, 1213 (1978) [Erratum-ibid. 41, 1523 (1978)]; S.R. Amendolia et al., Phys. Lett. B 178, 435 (1986).

    Google Scholar 

  • 74. H. Albrecht et al. [ARGUS Coll.], Z. Phys. C 57, 533 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David Blaschke Mikhal A. Ivanov Thomas Mannel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Roberts, C.D. Unifying Aspects of Light- and Heavy-Systems. In: Blaschke, D., Ivanov, M.A., Mannel, T. (eds) Heavy Quark Physics. Lecture Notes in Physics, vol 647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40975-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40975-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21921-7

  • Online ISBN: 978-3-540-40975-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics