Skip to main content

High Rate Convolutional Codes with Optimal Cycle Weights

  • Conference paper
Cryptography and Coding (Cryptography and Coding 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2898))

Included in the following conference series:

  • 720 Accesses

Abstract

Consider a cycle in the state diagram of a rate (n-r)/n convolutional code. The total Hamming weight of all labels on the edges of the cycle divided by the number of edges is the average cycle weight per edge. Let w 0 denote the minimum average cycle weight per edge over all cycles in a minimal state diagram of a convolutional code, excluding the all-zero cycle around the all-zero state. For comparison between codes of different parameters, let \(w \triangleq w0/(n-r).\) This work investigates high rate convolutional codes with large w. We present an explicit construction technique of free distance d free =4 convolutional codes with limited bit-oriented trellis state complexity, high rate, and large w. The construction produces optimal codes, in the sense of maximizing w, within the classes of rate (μ(2μ− 1 + 1) + 2μ− 1)/(μ(2μ− 1 + 2) + 2μ), μ ≥ 2, codes with d free ≥ 3 and any code degree. An efficient exhaustive search algorithm is outlined as well. A computer search was carried out, and several codes having larger w than codes in the literature were found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hemmati, F., Costello Jr., D.J.: Asymptotically catastrophic convolutional codes. IEEE Trans. Inform. Theory IT-26, 298–304 (1980)

    Article  MathSciNet  Google Scholar 

  2. Hole, M.F., Hole, K.J.: Tight bounds on the minimum average weight per branch for rate (n — 1)/n convolutional codes. IEEE Trans. Inform. Theory 43, 1301–1305 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Höst, S., Johannesson, R., Zigangirov, K.S., Zyablov, V.V.: Active distances for convolutional codes. IEEE Trans. Inform. Theory 44, 658–669 (1999)

    Article  Google Scholar 

  4. Jordan, R., Pavlushkov, V., Zyablov, V.V.: Maximum slope convolutional codes. IEEE Trans. Inform. Theory (2001) (submitted for publication)

    Google Scholar 

  5. Bocharova, I.E., Handlery, M., Johannesson, R., Kudryashov, B.D.: Tailbiting codes obtained via convolutional codes with large active distance-slopes. IEEE Trans. Inform. Theory 48, 2577–2587 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Huth, G.K., Weber, C.L.: Minimum weight convolutional codewords of finite length. IEEE Trans. Inform. Theory 22, 243–246 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jordan, R., Pavlushkov, V., Zyablov, V.V.: An upper bound on the slope of con-volutional codes. In: Proc. IEEE Int. Symp. on Inform. Theory (ISIT), Lausanne, Switzerland, p. 424 (2002)

    Google Scholar 

  8. Rosnes, E.: Upper bound on the minimum average cycle weight of classes of convolutional codes. In: Proc. IEEE Int. Symp. on Inform. Theory (ISIT), Yokohama, Japan, p. 280 (2003)

    Google Scholar 

  9. Hole, K.J.: On classes of convolutional codes that are not asymptotically catastrophic. IEEE Trans. Inform. Theory 46, 663–669 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hole, K.J.: A note on asymptotically catastrophic convolutional codes of rate (n — 1)/n. IEEE Trans. Commun. 45, 1014–1016 (1997)

    Article  Google Scholar 

  11. Sidorenko, V., Zyablov, V.: Decoding of convolutional codes using a syndrome trellis. IEEE Trans. Inform. Theory 40, 1663–1666 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. McEliece, R., Lin, W.: The trellis complexity of convolutional codes. IEEE Trans. Inform. Theory 42, 1855–1864 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bahl, L.R., Cocke, J., Jelinek, F., Raviv, J.: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inform. Theory IT-20, 284–287 (1974)

    Article  MathSciNet  Google Scholar 

  14. McEliece, R.J.: The algebraic theory of convolutional codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, pp. 1065–1138. Elsevier, North-Holland (1998)

    Google Scholar 

  15. Ytrehus, Ø.: A note on high rate binary convolutional codes. Tech. Report no. 68, Department of Informatics, University of Bergen, Norway (1992)

    Google Scholar 

  16. CharnKeitKong, P., Imai, H., Yamaguchi, K.: On classes of rate k/(k + 1) convolutional codes and their decoding techniques. IEEE Trans. Inform. Theory 42, 2181–2193 (1996)

    Article  MATH  Google Scholar 

  17. McEliece, R.J.: On the BCJR trellis for linear block codes. IEEE Trans. Inform. Theory 42, 1072–1092 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hole, K.J., Ytrehus, Ø.: Cosets of convolutional codes with least possible maximum zero- and one-run lengths. IEEE Trans. Inform. Theory 44, 423–431 (1997)

    Article  MathSciNet  Google Scholar 

  19. Hole, K.J.: On the growth rate of convolutional codes. Tech. Report no. 172, Department of Informatics, University of Bergen, Norway (1999)

    Google Scholar 

  20. Rosnes, E.,Ytrehus,Ø.: On maximum length convolutional codes under a trellis complexity constraint. Journal of Complexity (2003) (accepted for publication)

    Google Scholar 

  21. Bocharova, I.E., Kudryashov, B.D., Handlery, M., Johannesson, R.: How to efficiently find the minimum distance of tailbiting codes. In: Proc. IEEE Int. Symp. on Inform. Theory (ISIT), Lausanne, Switzerland, p. 259 (2002)

    Google Scholar 

  22. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. SIAM J. Discr. Math. 23, 309–311 (1978)

    MATH  MathSciNet  Google Scholar 

  23. Dasdan, A., Irani, S.S., Gupta, R.K.: Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems. In: Proc. 36th Design Automation Conf. (DAC), New Orleans, LA, pp. 37–42 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosnes, E., Ytrehus, Ø. (2003). High Rate Convolutional Codes with Optimal Cycle Weights. In: Paterson, K.G. (eds) Cryptography and Coding. Cryptography and Coding 2003. Lecture Notes in Computer Science, vol 2898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40974-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40974-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20663-7

  • Online ISBN: 978-3-540-40974-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics