Skip to main content

Crystal Structure Analysis by Diffraction

  • Chapter
Scanning Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

  • 5409 Accesses

Abstract

Electrons are Bragg diffracted at lattice planes. The geometry of a diffraction pattern can be described by the kinematical theory. For the discussion of intensities it is necessary to use the dynamical theory of electron diffraction and the Bloch-wave model. Because a Bloch-wave field has nodes and antinodes at the nuclei and the probability density at the nuclei depends sensitively on the tilt relative to the Bragg position, the backscattering coefficient shows an anisotropy. When an electron probe is rocked, this anisotropy of the backscattering results in the electron channelling pattern (ECP). For a stationary electron probe, the angular distribution of backscattered electrons is modulated by excess and defect Kikuchi bands, leading to the formation of an electron backscattering pattern (EBSP), which can be observed on a fluorescent screen beside the specimen and recorded on a photographic emulsion or via a TV camera. At oblique incidence of the electron beam, the reflection high-energy electron diffraction (RHEED) pattern may contain Bragg diffraction spots and Kikuchi lines. ECP and EBSP are related by the theorem of reciprocity. These patterns contain information about the crystal structure, orientation and distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.B. Hirsch, A.Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals ( Butterworths, London 1965 )

    Google Scholar 

  2. S. Amelinckx, R. Gevers, G. Remaut, J. Van Landuyt: Modern Diffraction and Imaging Techniques in Material Science ( North-Holland, Amsterdam 1970 )

    Google Scholar 

  3. L. Reimer: Transmission Electron Microscopy. Physics of Image Formation and Microanalysis. Springer Ser. Opt. Sci., Vol. 36, 4th ed. ( Springer, Berlin, Heidelberg 1997 )

    Google Scholar 

  4. B. Vainshtein: Fundamanetals of Crystals, 2nd edn., Modern Crystallography 1, ( Springer, Berlin, Heidelberg 1994 )

    Google Scholar 

  5. B. Vainshtein, V.M. Fridkin, V.L. Indenbom: Modern Crystallography II. Springer Ser. Solid-State Sci., Vol. 21 ( Springer, Berlin, Heidelberg 1982 )

    Google Scholar 

  6. C.T. Young, J.L. Lytton: Computer generation and identification of Kikuchi projections. J. Appl. Phys. 43, 1408 (1972)

    ADS  Google Scholar 

  7. J.P. Spencer, C.J. Humphreys: Electron diffraction from tilted specimens and its application in SEM. In Electron Microscopy and Analysis, ed. by W.C. Nixon (IoP, London 1971 ) p. 310

    Google Scholar 

  8. P. Pirouz, L.M. Boswarva: Pseudo-Kikuchi pattern contrast from tilted specimens. in Scanning Electron Microscopy: systems and applications ( IoP, London 1973 ) p. 238

    Google Scholar 

  9. P. Hagemann, L. Reimer: An experimental proof of the dependent Bloch wave model by large-angle electron scattering from thin crystals. Phil. Mag. A 40, 367 (1979)

    ADS  Google Scholar 

  10. L. Reimer: Electron diffraction methods in TEM, STEM and SEM. Scanning 2, 3 (1979)

    Google Scholar 

  11. G.R. Booker, A.M.B. Shaw, M.J. Whelan, P.B. Hirsch: Some comments on the interpretation of the Kikuchi-like reflection patterns observed by SEM. Phil. Mag. 16, 1185 (1967)

    ADS  Google Scholar 

  12. E. Vicario, M. Pitaval, G. Fontaine: Etude des pseudo-lignes de Kikuchi observeés en microscopie électronique à balayage. Acta Cryst. A 27, 1 (1971)

    Google Scholar 

  13. L. Reimer, H.G. Badde, H. Seidel: Orientierungsanisotropie des Rückstreukoeffizienten und der Sekundärelektronenausbeute von 10–100 keV Elektronen. Z. Angew. Phys. 31, 145 (1971)

    Google Scholar 

  14. H.G. Badde, H. Drescher, E.R. Krefting, L. Reimer, H. Seidel, W. Bühring: Use of Mott scattering cross sections for calculating backscattering of 10100 keV electrons. In Proc. 25th Anniv. Meeting EMAG ( IoP, London 1971 ) p. 74

    Google Scholar 

  15. H. Drescher, E.R. Krefting, L. Reimer, H. Seidel: The orientation dependence of the electron backscattering coefficient of gold single crystal films. Z. Naturforschg. 29a, 833 (1974)

    ADS  Google Scholar 

  16. J.P. Spencer, C.J. Humphreys, P.B. Hirsch: A dynamical theory for the contrast of perfect and and imperfect crystals in the SEM using backscattered electrons. Phil. Mag 26, 193 (1972)

    ADS  Google Scholar 

  17. R. Sandström, J.F. Spencer, C.J. Humphreys: A theoretical model for the energy dependence of electron channelling patterns in SEM. J. Phys. D 7, 1030 (1974)

    ADS  Google Scholar 

  18. E.M. Schulson: Interpretation of the widths of SEM electron channelling lines. Phys. Stat. Solidi (b) 46, 95 (1971)

    ADS  Google Scholar 

  19. H. Seiler, G. Kuhnle: Zur Anisotropie der Elektronenausbeute in Abhängigkeit von der Energie der auslösenden Primärelektronen von 5–50 keV. Z. Angew. Phys. 29, 254 (1970)

    Google Scholar 

  20. H. Niedrig: Electron backscattering from thin films. J. Appl. Phys. 53, R15 (1982)

    ADS  Google Scholar 

  21. M. von Laue: Materiewellen und ihre Interferenzen (Akad. Verlagsges., Leipzig 1948 )

    Google Scholar 

  22. Y. Kainuma: The theory of Kikuchi pattern. Acta Cryst. 8, 247 (1955)

    Google Scholar 

  23. R.E. De Wames, W.F. Hall, G.W. Lehman: Mass dependence of the angular dependence of charged particle emission from crystals: transition to the classical limit. Phys. Rev. 174, 392 (1968)

    ADS  Google Scholar 

  24. D.S. Gemmell: Channelling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 46, 129 (1974)

    ADS  Google Scholar 

  25. H. Boersch: Über Bänder bei Elektronenbeugung. Z. Physik 38, 1000 (1937)

    Google Scholar 

  26. C.R. Hall: On the thickness dependence of Kikuchi band contrast. Phil. Mag. 22, 63 (1970)

    ADS  Google Scholar 

  27. M. Komura, S. Kojima, T. Ichinokawa: Contrast reversals of Kikuchi bands in transmission electron diffraction. J. Phys. Soc. Jpn. 33, 1415 (1972)

    ADS  Google Scholar 

  28. L. Reimer, W. Pöpper, B. Volbert: Contrast reversals in the Kikuchi bands of backscattered and transmitted electron diffraction patterns. in Developments in Electron Microscopy and Analysis, ed. by D.L. Misell (IoP, London 1977 ) p. 259

    Google Scholar 

  29. M.N. Alam, M. Blackman, D.W. Pashley: High-angle Kikuchi patterns. Proc. Roy. Soc. A 221, 224 (1954)

    ADS  Google Scholar 

  30. C.W.B. Grigson: Improved scanning electron diffraction system. Rev. Sci. Instr. 36, 1587 (1965)

    ADS  Google Scholar 

  31. in materials science. J. Mater. Sci. 7, 1069 (1972)

    Google Scholar 

  32. T. Ichinokawa, Y. Ishikawa, M. Kemmochi, N. Ikeda, Y. Hosokawa, J. Kirschner: Low energy SEM combined with LEED. Surf. Sci. 176, 397 (1986)

    ADS  Google Scholar 

  33. J. Kirschner, T. Ichinokawa, Y. Ishikawa, M. Kemmochi, N. Ikeda, Y. Hosokawa: LEED with microscopic resolution. SETA 1986/II ( SETA Inc., AMF O’Hare, IL 1986 ) p. 331

    Google Scholar 

  34. D.G. Coates: Kikuchi-like reflection patterns obtained with the SEM. Phil. Mag. 16, 1179 (1967)

    ADS  Google Scholar 

  35. G.R. Booker: Scanning electron microscopy: electron channelling effects, In Modern Diffraction and Imaging Techniques in Material Science ed. by S. Amelinckx et al. (North-Holland, Amsterdam 1970 ) p. 613

    Google Scholar 

  36. D.C. Joy: Electron channelling patterns in the SEM. In Quantitative Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 131

    Google Scholar 

  37. D.E. Newbury: The origin, detection, and uses of electron channelling contrast. SEM 1974 ( ITTRI, Chicago 1974 ) p. 1047

    Google Scholar 

  38. D.C. Joy, D.E. Newbury, D.L. Davidson: Electron channelling pattern in the SEM. J. Appl. Phys. 53, R81 (1982)

    ADS  Google Scholar 

  39. E.M. Schulson, C.G. van Essen: Optimum conditions for generating channelling patterns in the SEM. J. Phys. E 2, 247 (1969)

    ADS  Google Scholar 

  40. E.D. Wolf, T.E. Everhart: Annular diode detector for high annular resolution pseudo-Kikuchi patterns. SEM 1969 ( ITTRI, Chicago 1969 ) p. 41

    Google Scholar 

  41. D.G. Coates: Pseudo-Kikuchi orientation analysis in the SEM. SEM 1969 ( ITTRI, Chicago 1969 ) p. 27

    Google Scholar 

  42. E.M. Schulson, C.G. van Essen, D.C. Joy: The generation and application of SEM electron channeling patterns. SEM 1969 ( ITTRI, Chicago 1969 ) p. 45

    Google Scholar 

  43. J. Frosien, W. Gaebler, H. Niedrig: New display and specimen stage for large angle Kikuchi-like patterns. in Electron Microscopy 1974, Vol. 1 ed. by J.V. Sanders and D.J. Goodchild ( Australian Acad. of Science, Canberra 1974 ) p. 158

    Google Scholar 

  44. M. Brunner, H.J. Kohl, H. Niedrig: Großwinkel-Elektronen-Channeling Diagramme zur Untersuchung epitaktisch hergestellter Schichten. Optik 49, 477 (1978)

    Google Scholar 

  45. A.R. Dinnis: Limiting factors in direct stereo viewing. In Scanning Electron Microscopy: systems and applications ( IoP, London 1973 ) p. 76

    Google Scholar 

  46. A.R. Dinnis: Stereoscopic viewing in the SEM. In Developments in Elec- tron Microscopy and Analysis, ed. by D.L. Misell ( IoP, London 1977 ) p. 87

    Google Scholar 

  47. C.G. van Essen, E.M. Schulson: Selected area channelling patterns in the SEM. J. Mater. Sci. 4, 336 (1969)

    ADS  Google Scholar 

  48. C.G. van Essen, E.M. Schulson, R.H. Donaghay: The generation and identification of SEM channelling patterns from 10 µm areas. J. Mater. Sci. 6, 213 (1971)

    ADS  Google Scholar 

  49. G.R. Booker, R. Stickler: SEM selected-area channelling patterns: dependence of area on rocking angle and working distance. J. Mater. Sci. 7, 712 (1972)

    ADS  Google Scholar 

  50. C.G. van Essen: Selected area diffraction in the SEM — towards 1 micron. In Proc. 25th Anniv. Meeting of EMAG ( IoP, London 1971 ) p. 314

    Google Scholar 

  51. D.C. Joy, D.E. Newbury: SEM selected area channelling patterns from 1 micron specimen areas. J. Mater. Sci. 7, 714 (1972)

    ADS  Google Scholar 

  52. H. Seiler: Determination of the “information depth” in the SEM. SEM 1967/I ( ITTRI, Chicago 1967 ) p. 9

    Google Scholar 

  53. E.D. Wolf, M. Braunstein, A.I. Braunstein: Pseudo-Kikuchi pattern degradation by a thin amorphous silicon film. Appl.Phys. Lett. 15, 389 (1969)

    Google Scholar 

  54. S.M. Davidson, G.R. Booker: Decollimation of a parallel electron beam by thin surface films and its effect on SEM channelling patterns. In Microscopie Electronique 1970, Vol. 1, ed. by P. Favard ( Soc. Française Mier. Electronique, Paris 1970 ) p. 235

    Google Scholar 

  55. I.F. Page, C.J. McHargue, C.W. White: SEM electron channelling patterns as a technique for the characterization of ion-implantation damage. J. Microsc. 163, 245 (1991)

    Google Scholar 

  56. M. Hoffmann, L. Reimer: Channelling contrast on metal surfaces after ion beam etching. Scanning 4, 91 (1981)

    Google Scholar 

  57. E.M. Schulson: A SEM study of the degradation of electron channelling effects in alkali halide crystals during electron irradiation. J. Mater. Sci. 6, 377 (1971)

    ADS  Google Scholar 

  58. and pattern degradation in alkali halide crystals. SEM 1971 ( ITTRI, Chicago 1971 ) p. 489

    Google Scholar 

  59. A.D.G. Stewart: Recent developments in SEM. Beitr. elektr. mikr. Direktabb. Oberfl. 1, 283 (1968)

    Google Scholar 

  60. A. Boyde: Practical problems and methods in the 3D analysis of SEM images. SEM 1970 ( IT rRI, Chicago 1970 ) p. 105

    Google Scholar 

  61. S. Murray, A.H. Windle: Characterisation and correction of distortions in SEM micrographs. In Scanning Electron Microscopy: systems and applications ( IoP, London 1973 ) p. 88

    Google Scholar 

  62. J.D. Verhoeven, E.D. Gibson: Rotation between SEM micrograph and electron channelling patterns. J. Phys. E 8, 15 (1975)

    ADS  Google Scholar 

  63. D.C. Joy, C.M. Maruszewski: The rotation between selected area channelling patterns and micrographs in the SEM. J. Mater. Sci. 10, 178 (1975)

    ADS  Google Scholar 

  64. D.L. Davidson: Rotation between SEM micrographs and electron chan- nelling patterns. J. Phys. E 9, 341 (1976)

    ADS  Google Scholar 

  65. D.E. Newbury, D.C. Joy: A computer technique for the analysis of electron channelling patterns. In Proc. 25th Anniv. Meeting of EMAG ( IoP, London 1971 ) p. 306

    Google Scholar 

  66. D.C. Joy, G.R. Booker, E.O. Fearon, M. Bevis: Quantitative crystallographic orientation determinations of microcrystals present on solid specimens using the SEM. SEM 1971 ( ITTRI, Chicago 1971 ) p. 497

    Google Scholar 

  67. G.R. Booker: Electron channelling effects using the SEM. SEM 1970 ( IT- TRI, Chicago 1970 ) p. 489

    Google Scholar 

  68. J.D. Ayers, D.C. Joy: A crystallographic study of massive precipitates in Cu-Zn and Ag-Zn alloys utilizing selected area electron channelling. Acta Met. 20, 1371 (1972)

    Google Scholar 

  69. D.E. Newbury, D.C. Joy: SEM dynamical studies of the deformation of Pb-Sn superplastic alloys. In Proc. 25th Anniv. Meeting of EMAG ( IoP, London 1971 ) p. 216

    Google Scholar 

  70. D.C. Joy, E.M. Schulson, J.P. Jacubovics, C.G. van Essen: Electron channelling patterns from ferromagnetic crystals in the SEM. Phil. Mag. 20, 843 (1969)

    ADS  Google Scholar 

  71. L.F. Solovsky, D.R. Beaman: A simple method for determining the acceleration potential in electron probes and SEM. Rev. Sci. Instr. 43, 1100 (1972)

    Google Scholar 

  72. L. Reimer, H. Seidel, R. Blaschke: Energieabhängigkeit der Feinstruktur eines Channelling-Diagrammes am Beispiel des 111-Poles von Silizium. Beitr. elektr. mikr. Direktabb. Oberft. 4 /2, 289 (1971)

    Google Scholar 

  73. R. Stickler, C.W. Hughes, G.R. Booker: Application of the SA-ECP method to deformation studies. SEM 1971 ( ITTRI, Chicago 1971 ) p. 473

    Google Scholar 

  74. J.P. Spencer, G.R. Booker, C.J. Humphreys, D.C. Joy: Electron channelling patterns from deformed crystals. SEM 1974 ( ITTRI, Chicago 1974 ) p. 919

    Google Scholar 

  75. D.L. Davidson: A method for quantifying electron channelling pattern degradation due to material deformation. SEM 1974 ( ITTRI, Chicago 1974 ) p. 927

    Google Scholar 

  76. R.C. Farrow, D.C. Joy: Measurements of electron channelling pattern linewidths in silicon. Scanning 2, 249 (1979)

    Google Scholar 

  77. J.A. Venables, C.J. Harland: Electron back-scattering patterns — a new technique for obtaining crystallographic information in the SEM. Phil. Mag. 27, 1193 (1973)

    ADS  Google Scholar 

  78. J.A. Venables, R. Bin-Jaya: Accurate microcrystallography using electron back-scattering patterns. Phil. Mag. 35, 1317 (1977)

    ADS  Google Scholar 

  79. D.J. Dingley: Diffraction from sub-micron areas using electron backscattering in a SEM. SEM 1984/II ( SEM Inc., AMF O’Hare, IL 1984 ) p. 569

    Google Scholar 

  80. in einem SEM. Beitr. elektr. mikr. Direktabb. Oberft. 19, 105 (1986)

    Google Scholar 

  81. J.A. Venables, C.J. Harland, R. bin-Jaya: Crystallographic orientation determination in the SEM using electron backscattering patterns and channel plates. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (IoP, London 1976 ) p. 101

    Google Scholar 

  82. D.L. Barr, W.L. Brown: A channel plate detector for electron backscatter diffraction. Rev. Sci. Instr. 66, 3480 (1995)

    ADS  Google Scholar 

  83. C.J. Harland, P. Akhter, J.A. Venables: Accurate microcrystallography at high spatial resolution using electron back-scattering patterns in a field emission gun SEM. J. Phys. E 14, 175 (1981)

    ADS  Google Scholar 

  84. K.Z. Baba-Kishi: A study of directly recorded RHEED and BKD patterns in the SEM. Ultramicroscopy 34, 205 (1990)

    Google Scholar 

  85. F. Ouyang, O.L. Krivanek: Slow-scan CCD observation of backscattering patterns in SEM. In Proc. 50th Ann. Meeting EMSA ( San Francisco Press, San Francisco 1982 ) p. 1308

    Google Scholar 

  86. D.J. Dingley, K. Baba-Kishi: Use of electron backscatter diffraction patterns for determination of crystal symmetry elements. SEM 1986/II ( SEM Inc., AMF O’Hare, IL 1986 ) p. 383

    Google Scholar 

  87. K. Baba-Kishi, D.J. Dingley: Backscatter Kikuchi diffraction in the SEM for identification of crystallographic point groups. Scanning 11, 305 (1989)

    Google Scholar 

  88. K.Z. Baba-Kishi: Use of Kikuchi line intersections in crystal symmetry determination: application to chalcopyrite structure. Ultramicroscopy 36, 355 (1991)

    Google Scholar 

  89. K. Marthinsen, R. Hoier. On the breakdown of Friedel’s law in electron backscattering channelling patterns. Acta Cryst. A 44, 700 (1988)

    Google Scholar 

  90. N.H. Schmidt, J.B. Bilde Sorensen, P.J. Jensen: Band position used for on-line crystallographic orientation determination from EBSP. Scanning Microscopy 5, 637 (1991)

    Google Scholar 

  91. N.C.K Lassen, D.J. Jensen, K. Conradsen: Image processing procedure for analysis of EBSP. Scanning Microscopy 6, 115 (1992)

    Google Scholar 

  92. T. Ichinokawa, M. Nishimura, H. Wada: Contrast reversals of pseudoKikuchi bands and lines due to detector position in SEM. J. Phys. Soc. Jpn. 36, 221 (1974)

    ADS  Google Scholar 

  93. M. Pitaval, P. Morin, J. Baudry, E. Vicario, G. Fontaine: Advances in crystalline contrast from defects. SEM 1977/I ( ITTRI, Chicago 1977 ) p. 439

    Google Scholar 

  94. L. Reimer, U. Heilers, G. Saliger: Kikuchi band contrast in diffraction patterns recorded by transmitted and backscattered electrons. Scanning 8, 101 (1986)

    Google Scholar 

  95. N.C. Krieger Lassen, J.B. Bilde-Sorensen: Calibration of an electron backscattering pattern set-up. J. Microsc. 170, 125 (1993)

    Google Scholar 

  96. W. Kossel, H. Voges: Röntgeninterferenzen an der Einkristallantikathode. Ann. Phys. 23, 677 (1935)

    Google Scholar 

  97. W. Kossel: Zur Systematik der Röntgenreflexe eines Raumgitters. Ann. Phys. 25, 512 (1936); Messungen am vollständigen Reflexsystem eines Kristallgitters. Ann. Phys. 26, 533 (1936)

    Google Scholar 

  98. M. Bevis, N. Swindells: The determination of the orientation of microcrystals using back-reflection Kossel technique and an electron probe microanalyser. Phys. Stat. Solidi 20, 197 (1967)

    ADS  Google Scholar 

  99. M. Bevis, E.O. Fearon, P.C. Rowlands: The accurate determination of lattice parameters and crystal orientations from Kossel patterns. Phys. Stat. Solidi (a) 1, 653 (1970)

    ADS  Google Scholar 

  100. H. Yakowitz: The divergent beam x-ray technique. In Electron Probe Microanalysis, Suppl.IV, Adv. Electr. Electron Phys. (Academic, New York 1969 ) p. 361

    Google Scholar 

  101. R. Tixier, C. Wachè: Kossel patterns. J. Appl. Cryst. 3, 466 (1970)

    Google Scholar 

  102. H. Yakowitz: Role of divergent beam (Kossel) x-ray technique in SEM. In Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 451

    Google Scholar 

  103. D.J. Dingley, J.W. Steeds: Application of the Kossel x-ray back reflection technique in the SEM. In Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 487

    Google Scholar 

  104. D.J. Dingley: Theory and application of Kossel x-ray diffraction in the SEM. Scanning 1, 79 (1978)

    Google Scholar 

  105. J. Hejna: Divergent-beam x-ray diffraction in the SEM and its use for the study of the semiconductor epitaxial layers. SEM 1985/I11 ( SEM Inc., AMF O’Hare, IL 1985 ) p. 1103

    Google Scholar 

  106. J. Hejna, E.B. Radojewska, H. Szymanski, M. Wolcyrz: Determination of the lattice mismatch in heterostructures by x-ray diffraction in the SEM. Scanning 8, 177 (1986)

    Google Scholar 

  107. N. Swindells, J.C. Ruckman: A new Kossel camera design concept for the SEM. In Scanning Electron Microscopy: systems and applications ( IoP, London 1973 ) p. 303

    Google Scholar 

  108. S. Biggin, D.J. Dingley: A general method for locating the x-ray source point in Kossel diffraction. J. Appl. Cryst. 10, 376 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1998). Crystal Structure Analysis by Diffraction. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38967-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38967-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08372-3

  • Online ISBN: 978-3-540-38967-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics