Skip to main content

Heterostructure, Confined-Field Lasers

  • Chapter
Integrated Optics

Part of the book series: Advanced Texts in Physics ((ADTP))

  • 1187 Accesses

Abstract

In Chap. 12, it was demonstrated that confining the optical field to the region of the laser in which the inverted population exists results in a substantial reduction of threshold current density and a corresponding increase in efficiency. As early as 1963, it was proposed that heterojunctions could be used to produce a waveguiding structure with the desired property of optical confinement [14.1, 14.2]. At about the same time, others proposed using a heterojunction laser structure not for optical field confinement, but to produce higher carrier injection efficiency at the p-n junction, and to confine the carriers to the junction region [14.3, 14.4]. Actually, all three of these mechanisms are present in a heterostructure laser, and their combined effects result in a device that is vastly superior to the basic p-n homojunction laser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Diemer, B. Bölger: Physica 29, 600 (1963)

    Article  Google Scholar 

  2. T. Pecany: Phys. Stat. Sol. 6, 651 (1964)

    Article  ADS  Google Scholar 

  3. H. Kroemer: IEEE Proc. 51, 1782 (1963)

    Article  Google Scholar 

  4. Zh.I. Alferov: Soy. Phys. — Solid State 7, 1919 (1966)

    Google Scholar 

  5. I. Hayashi, M.B. Panish, P. Foy: IEEE J. QE-5, 211 (1969)

    Google Scholar 

  6. H. Kressel, H. Nelson: RCA Rev. 30, 106 (1969)

    Google Scholar 

  7. Zh.I. Alferov, V. Andreev, E. Portnoi, M. Taukhan: Soy. Phys. — Semicond. 3, 1107 (1969)

    Google Scholar 

  8. K. Sheger, A. Milnes, D. Feught: Proc. Int’l Conf. on Chem. Semicond. Hetero-junction Layer Structures, Budapest (Hung. Acad. Sci., Budapest 1970 ) Vol. 1, p. 73

    Google Scholar 

  9. P.H. Holloway, T.J. Anderson: Compound Semiconductors: Growth, Processing and Devices ( CRC Press, Boca Raton, FL 1989 ) p. 115

    Google Scholar 

  10. Q.H.F. Vrehen: J. Phys. Chem. Solids 29, 129 (1968)

    Article  ADS  Google Scholar 

  11. H. Yonezu, I. Sakuma, Y. Nannich: Jpn. J. Appl. Phys. 9, 231 (1970)

    Article  ADS  Google Scholar 

  12. A. Yariv, R.C.C. Leite: Appl. Phys. Lett. 2, 173 (1963)

    Article  Google Scholar 

  13. H.C. Casey Jr., M.B. Panish: Heterostructure Lasers, Pt. B: Materials and Operating Characterizations (Academic, New York 1978 ) pp. 109–132

    Google Scholar 

  14. H. Kroemer: IEEE Trans. ED-39, 2635 (1992)

    Google Scholar 

  15. K. Iga, S. Kinoshita: Semiconductor Lasers and Related Epitaxies, Springer Ser. Mater. Sci., Vol. 30 ( Springer, Berlin, Heidelberg 1995 )

    Google Scholar 

  16. A. McWhorter: Solid State Electron. 6, 417 (1963)

    Article  ADS  Google Scholar 

  17. H.C. Casey Jr., M.B. Panish: Heterostructure Lasers, Pt. A: Fundamental Principles (Academic, New York 1978 ) pp. 54–57

    Google Scholar 

  18. J. Kongas, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. Nabiev, M. Pesa: High-efficiency AlGaInP single-mode laser. IEEE Photonics Tech. Lett. 10, 1533 (1998)

    Article  ADS  Google Scholar 

  19. R.J. Lang, N.W. Carlson, E. Beyer, M. Obara: Introduction to the issue on high-power and high-brightness lasers. IEEE J. Selected Topics on Quantum Electron. 6, 561 (2000)

    Google Scholar 

  20. W. Schulz, R. Poprawe: Manufacturing with novel high-power diode lasers. IEEE J. Selected Topics on Quantum Electron. 6, 696 (2000)

    Article  Google Scholar 

  21. D. Greenaway, G. Harbeke: Optical Properties and Band Structure of Semiconductors ( Pergamon, Oxford 1968 ) p. 67

    Google Scholar 

  22. D.N. Payne, W.A. Gambling: Electron. Lett. 11, 176 (1975)

    Article  Google Scholar 

  23. M.J. Li, C. Saravanos: Optical fiber design for field-mountable connectors. IEEE J. Lightwave Tech. 18, 314 (2000)

    Article  ADS  Google Scholar 

  24. H. Kressel (ed.): Semiconductor Devices for Optical Communications, 2nd edn., Topics Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg 1982 ) pp. 285–289

    Google Scholar 

  25. H. Mani, A. Joullie, G. Boissier, E. Tournie, F. Pitard, C.A. Ailibert: Electron. Lett. 24, 1542 (1988)

    Article  Google Scholar 

  26. R.V. Martinelli: LEOS’88, Santa Clara, CA, Digest p. 55

    Google Scholar 

  27. H. Ebe, Y. Nishijima, K. Shinohara: 11th IEEE Int’1 Conf. on Semicond. Lasers, Boston, MA (1988) Digest p. 68

    Google Scholar 

  28. D.L. Partin: IEEE J QE-24, 1716 (1988)

    Google Scholar 

  29. J.C. Dyment: Appl. Phys. Lett. 10, 84 (1967)

    Article  ADS  Google Scholar 

  30. L.A. D’Asaro: J. Lumin 7, 310 (1973)

    Article  Google Scholar 

  31. H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, Y. Nannicki: Jpn. J. Appl. Phys. 12, 1585 (1973)

    Article  ADS  Google Scholar 

  32. T. Tsukada: J. Appl. Phys. 45, 4899 (1974)

    Article  ADS  Google Scholar 

  33. M. Nakamura: IEEE Trans. CAS-26, 1055 (1979)

    Google Scholar 

  34. N. Chinone: J. Appl. Phys. 48, 3237 (1977)

    Article  ADS  Google Scholar 

  35. K. Seki, T. Kamiya, H. Yanai: Trans. IECE (Jpn.) E-62, 73 (1979)

    Google Scholar 

  36. W.O. Schlosser: Bell. Syst. Tech. J. 52, 887 (1973)

    Google Scholar 

  37. W.T. Tsang, R.A. Logan, M. Ilegems: Appl. Phys. Lett. 32, 311 (1978)

    Article  ADS  Google Scholar 

  38. T. Kobayashi, H. Kawaguchi, Y. Furukawa: Jpn. J. Appl. Phys. 16, 601 (1977)

    Article  ADS  Google Scholar 

  39. I.P. Kaninow, R.S. Tucker: Mode-controlled semiconductor lasers, in Guided-Wave Optoelectronics, 2nd edn., ed. by T. Tamir, Springer Ser. Electron. Photon., Vol. 26 ( Springer, Berlin, Heidelberg 1990 ) pp. 211–263

    Google Scholar 

  40. R. Baets: Solid State Electron. 30, 1175 (1987)

    Article  ADS  Google Scholar 

  41. C.E. Hurwitz, J.A. Rossi, J.J. Hsieh, C.M. Wolfe: Appl. Phys. Lett. 27, 241 (1975)

    Article  ADS  Google Scholar 

  42. L.A. Koszi, A.K. Chin, B.P. Segner, T.M. Shen, N.K. Dutta: Electron. Lett. 21, 1209 (1985)

    Article  Google Scholar 

  43. A. Antreasyn, C.Y. Chen, R.A. Logan: Electron. Lett. 21, 405 (1985)

    Article  Google Scholar 

  44. A. Antreasyn, S.G. Napholtz, D.P. Wilt. P.A. Garbinski: IEEE J. QE-22, 1064 (1986)

    Google Scholar 

  45. M. Ishii, K. Kamon, M. Shimazu, M. Mihara, H. Kumabe, K. Isshiki: Electron. Lett. 23, 179 (1987)

    Article  ADS  Google Scholar 

  46. M. Ishii, K. Kamon, M. Shimazu, M. Mihara, H. Kumabe, K. Isshiki: Optoelectronics — Devices and Technologies 2, 83 (1987)

    Google Scholar 

  47. S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, Y. Yamamoto: Transverse-junctionstripe GaAs-AlGaAs lasers for squeezed light generation. IEEE J. Quantum Electronics 35, 387 (1999)

    Article  ADS  Google Scholar 

  48. K. Oe, Y. Noguchi, C. Canea: IEEE Photon. Tech. Lett. 6, 479 (1994)

    Article  ADS  Google Scholar 

  49. M. Kawabe, H. Kotani, K. Masuda, S. Namba: Appl. Phys. Lett. 26, 46 (1975)

    Article  ADS  Google Scholar 

  50. K. Aiki, M. Nakamura, J. Umeda: Appl. Phys. Lett. 29, 506 (1976)

    Article  ADS  Google Scholar 

  51. A. Talneau, M. Allovon, N. Bouadma, S. Slempkes, A. Ougazzaden, H. Nakajima: Agile and fast switching monolithically integrated four wavelength selectable source at 1.55 /µm. IEEE Photonics Tech. Lett. 11, 12 (1999)

    Article  ADS  Google Scholar 

  52. M. Krakowski, R. Blondeau, J. Ricciardi, J. Hirtz, M. Razeghi, B. de Cremoux: OSA/IEEE OFC/IGWO’86. Atlanta, GA, Paper TU33

    Google Scholar 

  53. D.I. Babic, K. Streubel, R.P. Mirin, N.M. Margalit, J.E. Bowers, E.L. Hu, D.E. Mars, L. Yang, K. Carey: Room-temperature continuous-wave operation of 1.54 µm vertical-cavity lasers. IEEE Photonics Tech. Lett. 7, 1225 (1995)

    Article  ADS  Google Scholar 

  54. T. Kallstenius, A. Landstedt, U. Smith, P. Granestrand: Role of nonradiative recombination in the degradation of InGaAsP/InP-based bulk lasers. IEE J. Quantum Electr. 36, 1312 (2000)

    Article  ADS  Google Scholar 

  55. A.V. Krishnamoorthy, L.M.F. Chirovsky, W.S. Hobson, R.E. Leibenguth, B.P. Hui, G.J. Zydzik, K.W. Goossen, J.D. Wynn, B.J. Tseng, J. Lopata, J.A. Walker, J.E. Cunningham, L.A. D’Asaro: Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits. IEEE Photonics Tech. Lett. 11, 128 (1999)

    Article  ADS  Google Scholar 

Supplementary Reading on Heterojunction Lasers

  • J.K. Butler (ed.): Semiconductor Injection Lasers (IEEE Press, New York 1980) H.C. Casey Jr., M.B. Panish: Heterostructure Lasers ( Academic, New York 1978 )

    Google Scholar 

  • H. Kressel (ed.): Semiconductor Devices for Optical Communication,2nd edn., Topics Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg 1982) Chap. 2

    Google Scholar 

  • H. Kressel, J.K. Butler: Semiconductor Lasers and Heterojunction LEDs ( Academic, New York 1977 )

    Google Scholar 

  • T. Tamir (ed.): Guided-Wave Optoelectronics,2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990) Chap. 5

    Google Scholar 

  • A. Yariv: Optical Electronics, 4th edn. ( Saunders College Publishing-HRW, Philadelphia 1991 ) Chap. 15

    Google Scholar 

  • W.B. Leigh: Devices for Optoelectronics (Marcel Dekker, New York 1996) Chap. 3

    Google Scholar 

  • P. Bhattacharya: Semiconductor Optoelectronic Devices, 2nd edn. ( Prentice Hall, Upper Saddle River, New Jersey 1997 ) Chap. 7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunsperger, R.G. (2002). Heterostructure, Confined-Field Lasers. In: Integrated Optics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38843-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38843-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12096-5

  • Online ISBN: 978-3-540-38843-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics