Skip to main content

Potential Distribution Methods and Free Energy Models of Molecular Solutions

  • Chapter
Free Energy Calculations

Part of the book series: Springer Series in CHEMICAL PHYSICS ((CHEMICAL,volume 86))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pratt, L. R., Molecular theory of hydrophobic effects: “She is too mean to have her name repeated.”, Annu. Rev. Phys. Chem. 2002, 53, 409-436

    Article  CAS  Google Scholar 

  2. Pohorille, A.; Pratt, L. R., Cavities in molecular liquids and the theory of hydrophobic solubilities, J. Am. Chem. Annu. 1990, 112, 5066-5074

    Article  CAS  Google Scholar 

  3. Pratt, L. R.; Pohorille, A., Theory of hydrophobicity: transient cavities in molecular liquids, Proc. Natl Acad. Sci. USA 1992, 89, 2995-2999

    Article  CAS  Google Scholar 

  4. Hummer, G.; Garde, S.; García, A. E.; Pohorille, A.; Pratt, L. R., An information theory model of hydrophobic interactions, Proc. Natl Acad. Sci. USA 1996, 93, 8951-8955

    Article  CAS  Google Scholar 

  5. Gomez, M. A.; Pratt, L. R.; Hummer, G.; Garde, S., Molecular realism in default models for information theories of hydrophobic effects, J. Phys. Chem. B 1999, 103, 3520-3523

    Article  CAS  Google Scholar 

  6. Garde, S.; Hummer, G.; García, A. E.; Paulaitis, M. E.; Pratt, L. R., Origin of entropy convergence in hydrophobic hydration and protein folding, Phys. Rev. Lett. 1996, 77, 4966-4968

    Article  CAS  Google Scholar 

  7. Pratt, L. R.; Pohorille, A., Hydrophobic effects and modeling of biophysical aqueous solution interfaces, Chem. Rev. 2002, 102, 2671-2691

    Article  CAS  Google Scholar 

  8. Ashbaugh, H. S.; Asthagiri, D.; Pratt, L. R.; Rempe, S. B., Hydration of krypton and consideration of clathrate models of hydrophobic effects from the perspective of quasi-chemical theory, Biophys. Chem. 2003, 105, 323-338

    Article  CAS  Google Scholar 

  9. Ashbaugh, H. S.; Pratt, L. R., Colloquium: Scaled particle theory and the length scales of hydrophobicity, Rev. Mod. Phys. 2006, 78, 159-178

    Article  CAS  Google Scholar 

  10. Beck, T. L.; Paulaitis, M. E.; Pratt, L. R., The Potential Distribution Theorem and Models of Molecular Solutions, Cambridge University Press: Cambridge, 2006

    Google Scholar 

  11. Hammersley, J. M.; Handscomb, D. C., Monte Carlo Methods, Chapman and Hall: London, 1964

    Google Scholar 

  12. Asthagiri, D.; Pratt, L. R.; Paulaitis, M. E.; Rempe, S. B., Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row metals, J. Am. Chem. Soc. 2004, 126, 1285-1289

    Article  CAS  Google Scholar 

  13. Kirkwood, J. G.; Poirier, J. C., The statistical mechanical basis of the Debye-H ückel theory of strong electrolytes, J. Phys. Chem. 1954, 86, 591-596

    Article  Google Scholar 

  14. Widom, B., Some topics in the theory of fluids, J. Chem. Phys. 1963, 39, 2808-2812

    Article  CAS  Google Scholar 

  15. Jackson, J. L.; Klein, L. S., Potential distribution method in equilibrium statistical mechanics, Phys. Fluids 1964, 7, 228-231

    Article  Google Scholar 

  16. Widom, B., Potential-distribution theory and the statistical mechanics of fluids, J. Phys. Chem. 1982, 86, 869-872

    Article  CAS  Google Scholar 

  17. Stell, G. Mayer-Montroll equations (and some variants) through history for fun and profit. in The Wonderful World of Stochastics A Tribute to Elliot W. Montroll, Shlesinger, M. F.; Weiss, G. H., Eds., vol. XII, Studies in Statistical Mechanics. Elsevier: New York, 1985, pp. 127-156

    Google Scholar 

  18. Lebowitz, J. L.; Percus, J. K.; Verlet, L., Ensemble dependence of fluctuations with application to machine computations, Phys. Rev. 1967, 153, 250

    Article  CAS  Google Scholar 

  19. Resnick, S. I., A Probability Path, Birkha üser: New York, 2001

    Google Scholar 

  20. Imai, T.; Hirata, F., Partial molar volume and compressibility of a molecule with internal degrees of freedom., J. Chem. Phys. 2003, 119

    Google Scholar 

  21. Bennett, C. H., Efficient estimation of free-energy differences from Monte Carlo data, J. Comp. Phys. 1976, 22, 245-268

    Article  Google Scholar 

  22. Ciccotti, G.; Frenkel, D.; McDonald, I. R., Simulation of Liquids and Solids. Mole-cular Dynamics and Monte Carlo Methods in Statistical Mechanics, North-Holland: Amsterdam, 1987

    Google Scholar 

  23. . Frenkel, D. Free-energy computation and first-order phase transitions. in International School of Physics ‘Enrico Fermi’, vol. XCVII. Soc. Italiana di Fisica: Bologna, 1986, pp. 151-188

    Google Scholar 

  24. Shing, K. S.; Chung, S. T., Computer-simulation methods for the calculation of solubil-ity in supercritical extraction systems, J. Phys. Chem. 1987, 91, 1674-1681

    Article  CAS  Google Scholar 

  25. Smith, P. E., Computer simulation of cosolvent effects on hydrophobic hydration, J. Phys. Chem. B 1999, 103, 525-534

    Article  CAS  Google Scholar 

  26. . Callen, H. B., Thermodynamics, [2nd edition]. See Chapter 5

    Google Scholar 

  27. Wood, R. H.; Yezdimer, E. M.; Sakane, S.; Barriocanal, J. A.; Doren, D. J., Free energies of solvation with quantum mechanical interaction energies from classical mechanical simulations, J. Chem. Phys. 1999, 110, 1329-37

    Article  CAS  Google Scholar 

  28. Sakane, S.; Yezdimer, E. M.; Liu, W. B.; Barriocanal, J. A.; Doren, D. J.; Wood, R. H., Exploring the ab initio/classical free energy perturbation method: the hydration free energy of water, J. Chem. Phys. 2000, 113, 2583-93

    Article  CAS  Google Scholar 

  29. Wood, R. H.; Liu, W. B.; Doren, D. J., Rapid calculation of the structures of solutions with ab initio interaction potentials., J. Phys. Chem. A 2002, 106, 6689-6693

    Article  CAS  Google Scholar 

  30. Liu, W. B.; Sakane, S.; Wood, R. H.; Doren, D. J., The hydration free energy of aqueous Na+ and Cl at high temperatures predicted by ab initio/classical free energy pertur-bation: 973 K with 0.535 g/cm3 and 573 K with 0.725 g/cm3 , J. Phys. Chem. A 2002, 106,1409-1418

    Article  CAS  Google Scholar 

  31. Sakane, S.; Liu, W. B.; Doren, D. J.; Shock, E. L.; Wood, R. H., Prediction of the Gibbs energies and an improved equation of state for water at extreme conditions from ab initio energies with classical simulations, Geochim. Cosmochim. Acta 2001, 65, 4067-4075

    Article  CAS  Google Scholar 

  32. Liu, W. B.; Wood, R. H.; Doren, D. J., Hydration free energy and potential of mean force for a model of the sodium chloride ion pair in supercritical water with ab initio solute-solvent interactions, J. Chem. Phys. 2003, 118, 2837-2844

    Article  CAS  Google Scholar 

  33. Liu, W. B.; Wood, R. H.; Doren, D. J., Density and temperature dependences of hydration free energy of Na+ and Cl at supercritical conditions predicted by a ini-tio/classical free energy perturbation, J. Phys. Chem. B 2003, 107, 9505-9513

    Article  CAS  Google Scholar 

  34. Pettitt, B. M., A Perspective on “Volume and heat of hydration of ions” - Born M. (1920) Z Phys. 1 : 45, Theor. Chem. Acc. 2000, 103, 171-172

    CAS  Google Scholar 

  35. Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling, J. Comput. Phys. 1977, 23, 187-199

    Article  Google Scholar 

  36. Hertz, J.; Krogh, A.; Palmer, R. G., Introduction to the Theory of Neural Computation, Addison-Wesley: Redwood City, CA, 1991

    Google Scholar 

  37. Plishke, M.; Bergerson, B., Equilibrium Statistical Physics, World Scientific: Singapore, 1994

    Google Scholar 

  38. Kalos, M. H.; Whitlock, P. A., Monte Carlo Methods, Volume I: Basics, Wiley-Interscience: New York, 1986

    Book  Google Scholar 

  39. . Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran 77, [2nd edition]

    Google Scholar 

  40. Hummer, G.; Pratt, L. R.; García, A. E., Multistate Gaussian model for electrostatic solvation free energies, J. Am. Chem. Soc. 1997, 119, 8523-8527

    Article  CAS  Google Scholar 

  41. Pratt, L. R.; Pohorille, A. in Proceedings of the EBSA 1992 International Workshop on Water-Biomolecule Interactions, Palma, M. U.; Palma-Vittorelli, M. B.; Parak, F., Eds. Societ á Italiana de Fisica: Bologna, 1993, pp. 261-268

    Google Scholar 

  42. Pohorille, A.; Wilson, M. A., Molecular structure of aqueous interfaces., Theochem 1993,284,271-98

    Article  CAS  Google Scholar 

  43. Pohorille, A., Transient cavities in liquids and the nature of the hydrophobic effect, Pol. J. Chem. 1998, 72, 1680-1690

    CAS  Google Scholar 

  44. Pratt, L. R., Hydrophobic effects Wiley: Chichester, 1998, pp. 1286-1294

    Google Scholar 

  45. Pohorille, A.; Wilson, M. A., Excess chemical potential of small solutes across water-membrane and water-hexane interfaces, J. Chem. Phys. 1996, 104, 3760-3773

    Article  CAS  Google Scholar 

  46. Pratt, L. R.; LaViolette, R. A., Quasi-chemical theories of associated liquids, Mol. Phys. 1998,94,909-915

    Article  CAS  Google Scholar 

  47. Pratt, L. R.; Rempe, S. B. Quasi-chemical theory and implicit solvent models for sim-ulations. in Simulation and Theory of Electrostatic Interactions in Solution. Computa-tional Chemistry, Biophysics, and Aqueous Solutions, Pratt, L. R.; Hummer, G., Eds., vol. 492, AIP Conference Proceedings. American Institute of Physics, Melville: New York, 1999, pp. 172-201

    Google Scholar 

  48. Paulaitis, M. E.; Pratt, L. R., Hydration theory for molecular biophysics, Adv. Prot. Chem. 2002, 62, 283-310

    Article  CAS  Google Scholar 

  49. Mathews, J.; Walker, R. L., Mathematical Methods of Physics, Benjamin: New York, 1964

    Google Scholar 

  50. Frisch, M. J. et al. Gaussian 98 (Revision A.2), 1998, Gaussian, Inc.: Pittsburgh PA

    Google Scholar 

  51. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648

    Article  CAS  Google Scholar 

  52. Asthagiri, D.; Pratt, L. R.; Ashbaugh, H. S., Absolute hydration free energies of ions, ion-water clusters, and quasi-chemical theory, J. Chem. Phys. 2003, 119, 2702-2708

    Article  CAS  Google Scholar 

  53. Asthagiri, D.; Pratt, L. R.; Kress, J. D.; Gomez, M. A., The hydration state of HO (aq), Chem. Phys. Lett. 2003, 380, 530-535

    Article  CAS  Google Scholar 

  54. Asthagiri, D.; Pratt, L. R.; Kress, J. D.; Gomez, M. A., HO (aq) hydration and mobility, Proc. Natl Acad. Sci. USA 2004, 101, 7229-7233

    Article  CAS  Google Scholar 

  55. Asthagiri, D.; Pratt, L. R.; Kress, J. D., Ab initio molecular dynamics and quasichemical study of H+ (aq)., Proc. Natl Acad. Sci. USA 2005, 102, 6704-6708

    Article  CAS  Google Scholar 

  56. Pratt, L. R.; LaViolette, R. A.; Gomez, M. A.; Gentile, M. E., Quasi-chemical theory for the statistical thermodynamics of the hard-sphere fluid, J. Phys. Chem. B 2001, 105, 11662-11668

    Article  CAS  Google Scholar 

  57. Pratt, L. R.; Ashbaugh, H. S., Self-consistent molecular field theory for packing in classical liquids, Phys. Rev. E 2003, 68, 021505

    Article  Google Scholar 

  58. Allen, M .P.; Tildesley, D. J., Computer Simulation of Liquids, Oxford Science: Oxford, 1987

    Google Scholar 

  59. . Frenkel, D.; Smit, B., Understanding Molecular Simulation. From Algorithms to Applications, [2nd edition]

    Google Scholar 

  60. Gallicchio, E.; Kubo, M. M.; Levy, R. M., Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation, J. Phys. Chem. B 2000, 104, 6271-6285

    Article  CAS  Google Scholar 

  61. Grossman, J. C.; Schwegler, E.; Galli, G., Quantum and classical molecular dynamics simulations of hydrophobic hydration structure around small solutes, J. Phys. Chem. B 2004,108,15865-15872

    Article  CAS  Google Scholar 

  62. Raschke, T. M.; Levitt, M., Detailed hydration maps of benzene and cyclohexane reveal distinct water structures, J. Phys. Chem. B 2004, 108, 13492-13500

    Article  CAS  Google Scholar 

  63. Hummer, G.; Pratt, L.R.; García, A.E., Free energy of ionic hydration, J. Phys. Chem. 1996,100,1206-1215

    Article  CAS  Google Scholar 

  64. Lebowitz, J. L.; Waisman, E. M., Statistical-mechanics of simple fluids: beyond van der Waals, Phys. Today 1980, 33, 24-30

    Article  CAS  Google Scholar 

  65. Jarzynski, C., Microscopic analysis of Clausius-Duhem processes, J. Stat. Phys. 1999, 96,415-427

    Article  Google Scholar 

  66. Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill: Singapore, 1991

    Google Scholar 

  67. Friedman, H. L.; Krishnan, C. V. Thermodynamics of ion hydration. in Water A Com-prehensive Treatise, Franks, F., Ed., vol. 3. Plenum: New York, 1973, pp. 1-118

    Google Scholar 

  68. Stell, G. Fluids with long-range forces. in Statistical Mechanics. Part A: Equilibrium Techniques, Berne, B. J., Ed. Plenum: New York, 1977, pp. 47-84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pratt, L.R., Asthagiri, D. (2007). Potential Distribution Methods and Free Energy Models of Molecular Solutions. In: Chipot, C., Pohorille, A. (eds) Free Energy Calculations. Springer Series in CHEMICAL PHYSICS, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38448-9_9

Download citation

Publish with us

Policies and ethics