Skip to main content

Summary and Outlook

  • Chapter
Free Energy Calculations

Part of the book series: Springer Series in CHEMICAL PHYSICS ((CHEMICAL,volume 86))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, C. H., Efficient estimation of free energy differences from Monte Carlo data, J. Comput. Phys. 1976, 22, 245-268

    Article  Google Scholar 

  2. Lee, C. Y., Scott, H. L., The surface tension of water: a Monte Carlo calculation using an umbrella sampling algorithm, J. Chem. Phys. 1980, 73, 4591-4596

    Article  CAS  Google Scholar 

  3. Oberhofer, H., Dellago, C., Geissler, P. L., Biased sampling of non-equilibrium trajecto-ries: can fast switching simulations beat conventional free energy calculation methods? J. Phys. Chem. B 2005, 109, 6902-6915

    Article  CAS  Google Scholar 

  4. Bitetti-Putzer, R., Yang, W., Karplus, M., Generalized ensembles serve to improve the convergence of free energy simulations, Chem. Phys. Lett. 2003, 377, 633-641

    Article  CAS  Google Scholar 

  5. Paulaitis, M. E., Pratt, L. R., Hydration theory for molecular biophysics, Adv. Prot. Chem. 2002, 62, 283-310

    Article  CAS  Google Scholar 

  6. Pratt, L. R., Molecular theory of hydrophobic effects: “She is too mean to have her name repeated”, Annu. Rev. Phys. Chem. 2002, 53, 409-436

    Article  CAS  Google Scholar 

  7. Chandler, D., Interfaces and the driving force of hydrophobic assembly, Nature 2005, 437,640-647

    Article  CAS  Google Scholar 

  8. Petrenko, V. A., Smith, G. P., Phage display, Chem. Rev. 1997, 97, 381-410

    Google Scholar 

  9. Kolkman, J.A., Stemmer, W.P., Directed evolution of proteins by exon shuffling, Nat. Biotechnol. 2002, 19, 423-428

    Article  Google Scholar 

  10. Farinas, E.T., Bulter, T., Arnold, F.H., Directed enzyme evolution, Curr. Opin. Biotechnol. 2001, 12, 545-551

    Article  CAS  Google Scholar 

  11. Keefe, A. D., Szostak, J. W., Functional proteins from a random-sequence library, Nature 2001, 410, 715-718

    Article  CAS  Google Scholar 

  12. Shoichet, B., Bodian, D., Kuntz, I., Molecular docking using shape descriptors, J. Comput. Chem. 1992, 13, 380-397

    Article  CAS  Google Scholar 

  13. Jones, G., Willett, P., Glen, R. C., Leach, A. R., Taylor, R., Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol. 1997, 267, 727-748

    Article  CAS  Google Scholar 

  14. Claussen, H., Buning, C., Rarey, M., Lengauer, T., FLEXE: efficient molecular docking considering protein structure variations, J. Mol. Biol. 2001, 308, 377-395

    Article  CAS  Google Scholar 

  15. Bowie, J.U., Luthy, R., Eisenberg, D., A method to identify protein sequences that fold into a known three-dimensional structure, Science 1991, 253, 164-170

    Article  CAS  Google Scholar 

  16. Dunbrack, R. L., Sequence comparison and protein structure prediction, Curr. Opin. Struct. Biol. 2006, 16, 374-384

    Article  CAS  Google Scholar 

  17. Street, A. G., Mayo, S. L., Computational protein design, Structure 1999, 7, R105-R109

    Article  CAS  Google Scholar 

  18. Bonneau, R., Baker, D., Ab initio protein structure prediction: progress and prospects, Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 173-189

    Article  CAS  Google Scholar 

  19. Saven, J. G., Combinatorial protein design, Curr. Opin. Struct. Biol. 2002, 12, 453-458

    Article  CAS  Google Scholar 

  20. Amadei, A., Linssen, A. B. M., Berendsen, H. J. C., Essential dynamics of proteins, Proteins: Struct. Funct. Genet. 1993, 17, 412-425

    Article  CAS  Google Scholar 

  21. Amadei, A., Apol, M. E. F., Berendsen, H. J. C., The quasi-Gaussian entropy theory: free energy calculations based on the potential energy distribution function, J. Chem. Phys. 1996, 104, 1560-1574

    Article  CAS  Google Scholar 

  22. Daidone, I., Amadei, A., Roccatano, D., Nola, A. D., Molecular dynamics simulation of protein folding by essential dynamics sampling: folding landscape of horse heart cytochrome c, Biophys. J. 2003, 85, 2865-2871

    Article  CAS  Google Scholar 

  23. Chen, C., Xiao, Y., Zhang, L., A directed essential dynamics simulation of peptide folding, Biophys. J. 2005, 88, 3276-3285

    Article  CAS  Google Scholar 

  24. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus, M., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem. 1983, 4, 187-217

    Article  CAS  Google Scholar 

  25. Go, N., Noguti, T., Nisikawa, T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl Acad. Sci. USA 1983, 80, 3696-3700

    Article  CAS  Google Scholar 

  26. Levitt, M., Sander, C., Stern, P. S., Normal-mode dynamics of a protein: bovine pancre-atic trypsin inhibitor, Int. J. Quant. Chem: Quant. Biol. Symp. 1983, 10, 181-199

    CAS  Google Scholar 

  27. Bahar, I., Atilgan, A. R., Erman, B., Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Fold. Des. 1997, 2, 173-181

    Article  CAS  Google Scholar 

  28. Hinsen, K., Analysis of domain motions by approximate normal mode calculations, Proteins: Struct. Funct. Genet. 1998, 33, 417-429

    Article  CAS  Google Scholar 

  29. Schuyler, A. D., Chirikjian, G. S., Efficient determination of low-frequency normal modes of large protein structures by cluster-NMA, J. Mol. Graph. Model. 2005, 24, 46-58

    Article  CAS  Google Scholar 

  30. Tembe, B. L., McCammon, J. A., Ligand-receptor interactions, Comput. Chem. 1984, 8,281-283

    Article  CAS  Google Scholar 

  31. Miyamoto, S., Kollman, P. A., What determines the strength of noncovalent association of ligands to proteins in aqueous solution? Proc. Natl Acad. Sci. USA 1993, 90, 8402-8406

    Article  CAS  Google Scholar 

  32. H énin, J., Maigret, B., Tarek, M., Escrieut, C., Fourmy, D., Chipot, C., Probing a model of a GPCR/ligand complex in an explicit membrane environment. The human cholecystokinin-1 receptor, Biophys. J. 2006, 90, 1232-1240

    Article  Google Scholar 

  33. Wank, S. A., G protein-coupled receptors in gastrointestinal physiology. I. CCK recep-tors: an exemplary family, Am. J. Physiol. 1998, 274, G607-G613

    CAS  Google Scholar 

  34. Sanbonmatsu, K. Y., Simpson, J., Tung, C. S., Simulating movement of tRNA into the ribosome during decoding, Proc. Natl Acad. Sci. USA 2005, 102, 15854-15859

    Article  CAS  Google Scholar 

  35. Cieplak, P., Caldwell, J. W., Kollman, P. A., Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approxima-tion: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases, J. Comput. Chem. 2001, 22, 1048-1057

    Article  CAS  Google Scholar 

  36. Ren, P., Ponder, J. W., Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations, J. Comput. Chem. 2002, 23, 1497-1506

    Article  CAS  Google Scholar 

  37. Kaminski, G. A., Stern, H. A., Berne, B. J., Friesner, R. A., Cao, Y. X., Murphy, R. B., Zhou, R., Halgren, T. A., Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests, J. Comput. Chem. 2002,23,1515-1531

    Article  CAS  Google Scholar 

  38. Patel, S., Mackerell, A. D., Brooks, C. L., CHARMM fluctuating charge force field for proteins. II. Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model, J. Comput. Chem. 2004, 25, 1504-1514

    Article  CAS  Google Scholar 

  39. Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B., Mackerell, A. D., A polarizable model of water for molecular dynamics simulations of biomolecules, Chem. Phys. Lett. 2006,418,245-249

    Article  CAS  Google Scholar 

  40. Gao, J., Truhlar, D. G., Quantum mechanical methods for enzyme kinetics, Annu. Rev. Phys. Chem. 2002, 53, 467-505

    Article  CAS  Google Scholar 

  41. Friesner, R. A., Guallar, V., Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis, Annu. Rev. Phys. Chem. 2005, 56, 389-427

    Article  CAS  Google Scholar 

  42. Car, R., Parrinello, M., Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett. 1985, 55, 2471-2474

    Article  CAS  Google Scholar 

  43. Galli, G., Parrinello, M., Ab initio molecular dynamics: principles and practical imple-mentation. In: Computer Simulation in Material Science, Meyer, M., Pontikis, V., Eds. Kluwer: Dordecht, 1991, p. 283

    Google Scholar 

  44. Marx, D., Hutter, J., Ab initio molecular dynamics: theory and implementation. In: Modern Methods and Algorithms of Quantum Chemistry, Grotendorst, J., Ed. John von Neumann Institute for Computing: J ülich, NIC Series, 2000, pp. 301-449

    Google Scholar 

  45. Jensen, M. O., Rothlisberger, U., Rovira, C., Hydroxide and proton migration in aqua-porins, Biophys. J. 2005, 89, 1744-1759

    Article  CAS  Google Scholar 

  46. Hwang, J.-K., Warshel, A., How important are quantum mechanical nuclear motions in enzyme catalysis?, J. Am. Chem. Soc 1996, 118, 11745-11751

    Article  CAS  Google Scholar 

  47. Burykin, A., Warshel, A., What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals, Biophys. J. 2003, 85, 3696-3706

    Article  CAS  Google Scholar 

  48. Wu, Y., Voth, G. A., A computer simulation study of the hydrated proton in a synthetic proton channel, Biophys. J. 2003, 85, 864-875

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pohorille, A., Chipot, C. (2007). Summary and Outlook. In: Chipot, C., Pohorille, A. (eds) Free Energy Calculations. Springer Series in CHEMICAL PHYSICS, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38448-9_14

Download citation

Publish with us

Policies and ethics