Skip to main content

Quantum Contributions to Free Energy Changes in Fluids

  • Chapter
Free Energy Calculations

Part of the book series: Springer Series in CHEMICAL PHYSICS ((CHEMICAL,volume 86))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals, McGraw-Hill: New York, 1965

    Google Scholar 

  2. Feynman, R. P., Statistical Mechanics, Benjamin/Cummings: London, 1972

    Google Scholar 

  3. Chandler, D.; Wolynes, P. G., Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids, J. Chem. Phys. 1981, 74, 4078-4095

    Article  CAS  Google Scholar 

  4. Ceperley, D. M., Path integrals in the theory of condensed helium, Rev. Mod. Phys. 1995,67,279-355

    Article  CAS  Google Scholar 

  5. Parrinello, M.; Rahman, A., Study of an F center in molten KCl, J. Chem. Phys. 1984, 80,860-867

    Article  CAS  Google Scholar 

  6. Laria, D.; Chandler, D., Comparative study of theory and simulation calculations for excess electrons in simple fluids, J. Chem. Phys. 1987, 87, 4088-4092

    Article  CAS  Google Scholar 

  7. Marchi, M.; Sprik, M.; Klein, M. L., Calculation of the free energy of electron solva-tion in liquid ammonia using a path integral quantum Monte Carlo simulation, J. Phys. Chem. 1988, 92, 3625-3629

    Article  CAS  Google Scholar 

  8. Wang, Q.; Johnson, J. K.; Broughton, J. Q., Thermodynamic properties and phase equi-librium of fluid hydrogen from path integral simulations, Mol. Phys. 1996, 89, 1105-1119

    CAS  Google Scholar 

  9. Wang, Q.; Johnson, J. K.; Broughton, J. Q., Path integral grand canonical Monte Carlo, J. Chem. Phys. 1997, 107, 5108-5117

    Article  CAS  Google Scholar 

  10. Poulsen, J. A.; Nyman, G.; Rossky, P. J., Quantum diffusion in liquid para-hydrogen: an application of the Feynman-Kleinert linearized path integral approximation, J. Phys. Chem. B 2004, 108, 19799-19808

    Article  CAS  Google Scholar 

  11. Sese, L. M., A quantum Monte Carlo study of liquid Lennard-Jones methane, path-integral and effective potentials, Mol. Phys. 1992, 76, 1335-1346

    Article  CAS  Google Scholar 

  12. Tchouar, N.; Ould-Kaddur, F.; Levesque, D., Computation of the properties of liquid neon, methane, and gas helium at low temperature by the Feynman-Hibbs approach, J. Chem. Phys. 2004, 121, 7326-7331

    Article  CAS  Google Scholar 

  13. Thirumalai, D.; Hall, R. W.; Berne, B. J., A path integral Monte Carlo study of liquid neon and the quantum effective pair potential, J. Chem. Phys. 1984, 81, 2523-2527

    Article  CAS  Google Scholar 

  14. Morales, J. J.; Singer, K., Path integral simulation of the free energy of Lennard-Jones neon, Mol. Phys. 1991, 73, 873-880

    Article  CAS  Google Scholar 

  15. Sese, L. M., Feynman-Hibbs quantum effective potentials for Monte Carlo simulations of liquid neon, Mol. Phys. 1993, 78, 1167-1177

    Article  CAS  Google Scholar 

  16. Ortiz, V.; Lopez, G. E., Fourier path integral Monte Carlo study of a two-dimensional model quantum monolayer, Mol. Phys. 2002, 100, 1003-1009

    Article  CAS  Google Scholar 

  17. Sese, L. M., Path integral and effective potential Monte Carlo simulations of liquid nitrogen, hard-sphere and Lennard-Jones potentials, Mol. Phys. 1991, 74, 177-189

    Article  CAS  Google Scholar 

  18. Miller, T. F., III; Clary, D. C., Torsional path integral Monte Carlo method for calculating the absolute quantum free energy of large molecules, J. Chem. Phys. 2003, 119, 68-76

    Article  CAS  Google Scholar 

  19. Srinivisan, J.; Volobuev, Y. L.; Mielke, S. L.; Truhlar, D. G., Parallel Fourier path-integral Monte Carlo calculations of absolute free energies and chemical equilibria, Comput. Phys. Commun. 2000, 128, 446-464

    Article  Google Scholar 

  20. Doll, J. D.; Beck, T. L.; Freeman, D. L., Equilibrium and dynamical Fourier path integral methods, Adv. Chem. Phys. 1990, 78, 61-127

    Article  CAS  Google Scholar 

  21. Runge, K. J.; Chester, G. V., Solid-fluid phase transition of quantum hard spheres at finite temperature, Phys. Rev. B 1988, 38, 135-162

    Article  CAS  Google Scholar 

  22. Barrat, J.-L.; Loubeyre, P.; Klein, M. L., Isotopic shift in the melting curve of helium: a path integral Monte Carlo study, J. Chem. Phys. 1989, 90, 5644-5650

    Article  CAS  Google Scholar 

  23. Li, D.; Voth, G. A., A path integral Einstein model for characterizing the equilibrium states of low temperature solids, J. Chem. Phys. 1992, 96, 5340-5353

    Article  CAS  Google Scholar 

  24. Liu, A.; Beck, T. L., Determination of excess Gibbs free energy of quantum mixtures by MC path integral simulations, Mol. Phys. 1995, 86, 225-233

    Article  CAS  Google Scholar 

  25. Guillot, B.; Guissani, Y., Quantum effects in simulated water by the Feynman-Hibbs approach, J. Chem. Phys. 1998, 108, 10162-10174

    Article  CAS  Google Scholar 

  26. Ben-Naim, A.; Marcus, Y., Solvation thermodynamics of nonionic solutes, J. Chem. Phys. 1984, 81, 2016-2027

    Article  CAS  Google Scholar 

  27. Gripon, C.; Legrand, L.; Rosenman, I.; Vidal, O.; Robert, M. C.; Boue, F., Lysozyme solubility in H2 O and D2 O solutions: a simple relationship, J. Cryst. Growth 1997, 177, 238-247

    Article  CAS  Google Scholar 

  28. Bonnete, F.; Madern, D.; Zaccai, G., Stability against denaturation mechanisms in halophilic malate dehydrogenase “adapt” to solvent connditions, J. Mol. Biol. 1994, 244,436-447

    Article  CAS  Google Scholar 

  29. Beck, T. L.; Paulaitis, M. E.; Pratt, L. R., The Potential Distribution Theorem and Models of Molecular Solutions, Cambridge University Press: New York, 2006

    Google Scholar 

  30. Lobaugh, J.; Voth, G. A., The quantum dynamics of an excess proton in water, J. Chem. Phys. 1996, 104, 2056-2069

    Article  CAS  Google Scholar 

  31. Hwang, J.-K.; Warshel, A., How important are quantum mechanical nuclear motions in enzyme catalysis, J. Am. Chem. Soc. 1996, 118, 11745-11751

    Article  CAS  Google Scholar 

  32. Gao, J.; Truhlar, D. G., Quantum mechanical methods for enzyme kinetics, Ann. Rev. Phys. Chem. 2002, 53, 467-505

    Article  CAS  Google Scholar 

  33. Friesner, R. A.; Guallar, V., Ab initio quantum chemical and mixed quantum mechan-ics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis, Ann. Rev. Phys. Chem. 2005, 56, 389-427

    Article  CAS  Google Scholar 

  34. Mahoney, M. W.; Jorgensen, W. L., Quantum, intramolecular flexibility, and polariz-ability effects on the reproduction of the density anomaly of liquid water by simple potential functions, J. Chem. Phys. 2001, 115, 10758-10768

    Article  CAS  Google Scholar 

  35. Chen, B.; Ivanov, I.; Klein, M. L.; Parrinello, M., Hydrogen bonding in water, Phys. Rev. Lett. 2003, 91, 215503

    Google Scholar 

  36. Asthagiri, D.; Pratt, L. R.; Kress, J. D., Free energy of liquid water on the basis of quasichemical theory and ab initio molecular dynamics, Phys. Rev. E 2003, 68, 041505

    Google Scholar 

  37. . Fernandez-Serra, M. V.; Ferlat, G.; Artacho, E., Two exchange-correlation func-tionals compared for first-principles liquid water, Los Alamos Eprint archive: cond-mat/0407724, 2004

    Google Scholar 

  38. Kuo, I.-F. W.; Mundy, C. J.; McGrath, M. J.; Siepmann, J. I.; VandeVondele, J.; Sprik, M.; Hutter, J.; Chen, B.; Klein, M. L.; Mohamed, F.; Krack, M.; Parrinello, M., Liquid water from first principles: investigation of different sampling approaches, J. Phys. Chem. B 2004, 108, 12990-12998

    Article  CAS  Google Scholar 

  39. Schwegler, E.; Grossman, J. C.; Gygi, F.; Galli, G., Towards an assessment of the ac-curacy of density functional theory for first principles simulations of water II, J. Chem. Phys. 2004, 121, 5400-5409

    Article  CAS  Google Scholar 

  40. Allesch, M.; Schwegler, E.; Gygi, F.; Galli, G., A first principles simuation of rigid water, J. Chem. Phys. 2004, 120, 5192

    Article  CAS  Google Scholar 

  41. Widom, B., Some topics in the theory of fluids, J. Chem. Phys. 1963, 39, 2808-2812

    Article  CAS  Google Scholar 

  42. Widom, B., Potential-distribution theory and the statistical mechanics of fluids, J. Phys. Chem. 1982, 86, 869-872

    Article  CAS  Google Scholar 

  43. . Landau, L. D.; Lifshitz, E. M., Statistical Physics, (3rd edition, part 1), 1980

    Google Scholar 

  44. Stratt, R. M., Semiclassical statistical mechanics of fluids: nonperturbative incorporation of quantum effects in classical many body models, J. Chem. Phys. 1979, 70, 3630-3638

    Article  CAS  Google Scholar 

  45. Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, World Scientific: Singapore, 1995

    Google Scholar 

  46. Coalson, R. D., On the connection between Fourier coefficient and discretized Cartesian path integration, J. Chem. Phys. 1986, 85, 926

    Article  Google Scholar 

  47. Pratt, L. R., A statistical method for identifying transition states in high dimensional problems, J. Chem. Phys. 1986, 85, 5045-5048

    Article  CAS  Google Scholar 

  48. Beck, T. L., Quantum path integral extension of Widom’s test particle method for chem-ical potentials with application to isotope effects on hydrogen solubilities in model solids, J. Chem. Phys. 1992, 96, 7175-7177

    Article  CAS  Google Scholar 

  49. Beck, T. L.; Marchioro, T. L., The quantum potential distribution theorem, in Path Integrals from meV to MeV: Tutzing 1992, Grabert, H.; Inomata, A.; Schulman, L.; Weiss, U., Eds., World Scientific: Singapore, 1993, pp. 238-243

    Google Scholar 

  50. van Kampen, N. G., Stochastic Processes in Physics and Chemistry, Elsevier: New York, 1992

    Google Scholar 

  51. Jarzynski, C., Nonequilibrum equality for free energy differences, Phys. Rev. Lett. 1997, 78,2690-2693

    Article  CAS  Google Scholar 

  52. Roepstorff, G., Path Integral Approach to Quantum Physics, Springer: Berlin, Heidelberg, New York, 1994

    Google Scholar 

  53. Predescu, C., The partial averaging method, J. Math. Phys. 2003, 44, 1226-1239

    Article  Google Scholar 

  54. Lobaugh, J.; Voth, G. A., A quantum model for water: equilibrium and dynamical properties, J. Chem. Phys. 1997, 106, 2400-2410

    Article  CAS  Google Scholar 

  55. de la Pena, L. Hernandez; Kusalik, P. G., Quantum effects in light and heavy water: a rigid-body centroid molecular dynamics study, J. Chem. Phys. 2004, 121, 5992-6002

    Google Scholar 

  56. Stern, H. A.; Berne, B. J., Quantum effects in liquid water: path-integral simulations of a flexible and polarizable ab initio model, J. Chem. Phys. 2001, 115, 7622

    Article  CAS  Google Scholar 

  57. Gray, C. G.; Gubbins, K. E., Thoery of Molecular Fluids. Volume 1: Fundamentals, Oxford University Press: Oxford, 1984

    Google Scholar 

  58. Predescu, C.; Doll, J. D., Optimal series representations for numerical path integral simulations, J. Chem. Phys. 2003, 117, 7448-7463

    Article  Google Scholar 

  59. Mielke, S. L.; Truhlar, D. G., A new Fourier path integral method, a more gen-eral scheme for extrapolation, and comparison of eight path integral methods for the quantum mechanical calculation of free energies, J. Chem. Phys. 2001, 114, 621-630

    Article  CAS  Google Scholar 

  60. Kuharski, R. A.; Rossky, P. J., A quantum mechanical study of structure in liquid H2 O and D2 O, J. Chem. Phys. 1985, 82, 5164-5177

    Article  CAS  Google Scholar 

  61. Wallqvist, A.; Berne, B. J., Path-integral simulation of pure water, Chem. Phys. Lett. 1985,117,214

    Article  CAS  Google Scholar 

  62. Goldman, N.; Leforestier, C.; Saykally, R. J., A ‘first principles’ potential energy surface for liquid water from VRT spectroscopy of water clusters, Philos. Trans. R. Soc. A 2005, 1-16. doi:10.1098/rsta.2004.1504

    Google Scholar 

  63. . Sit, P.; Marzari, N., Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics, Los Alamos Eprint Server 2005. cond-mat/0504146

    Google Scholar 

  64. de la Pena, L. Hernandez; Kusalik, P. G., Temperature dependence of quantum effects in liquid water, J. Am. Chem. Soc. 2005, 127, 5246-5251

    Article  Google Scholar 

  65. Grossman, J. C.; Schwegler, E.; Draeger, E. W.; Gygi, F.; Galli, G., Towards an assessment of the accuracy of density functional theory for first principles simulations of water, J. Chem. Phys. 2004, 120, 300-311

    Article  CAS  Google Scholar 

  66. Saam, J.; Tajkhorshid, E.; Hayashi, S.; Schulten, K., Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin, Biophys. J. 2002, 83, 3097-3112

    Article  CAS  Google Scholar 

  67. Brewer, M. L.; Schmitt, U. W.; Voth, G. A., The formation and dynamics of proton wires in channel environments, Biophys. J. 2001, 80, 1691-1702

    Article  CAS  Google Scholar 

  68. Wu, Y.; Voth, G. A., A computer simulation study of the hydrated proton in a synthetic proton shannel, Biophys. J. 2003, 85, 864-875

    Article  CAS  Google Scholar 

  69. Chakrabarti, N.; Roux, B.; Pomes, R., Structural determinants of proton blockage in aquaporins, J. Mol. Biol. 2004, 343, 493-510

    Article  CAS  Google Scholar 

  70. Yin, J.; Kuang, Z.; Mahankali, U.; Beck, T. L., Ion transit pathways and gating in ClC chloride channels, Proteins: Struct. Funct. Bioinform. 2004, 57, 414-421

    Article  Google Scholar 

  71. Asthagiri, D.; Pratt, L. R.; Kress, J. D., Ab initio molecular dynamics and quasichemical study of H+ (aq), Proc. Natl Acad. Sci. 2005, 102, 6704-6708

    Article  CAS  Google Scholar 

  72. Burykin, A.; Warshel, A., What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals, Biophys. J. 2003, 85, 3696-3706

    Article  CAS  Google Scholar 

  73. Bliznyuk, A. A.; Rendell, A. P., Electronic effects in biomolecular simulations: investi-gations of the KcsA potassium ion channel, J. Phys. Chem. B 2004, 108, 13866-13873

    Article  CAS  Google Scholar 

  74. Jensen, M. O.; Rothlisberger, U.; Rovira, C., Hydroxide and proton migration in aqua-porins, Biophys. J. 2005, 89, 1744-1759

    Article  CAS  Google Scholar 

  75. Laio, A.; VandeVondele, J.; Rothlisberger, U., A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations, J. Chem. Phys. 2002,116,6941-6947

    Article  CAS  Google Scholar 

  76. Pomes, R.; Roux, B., Theoretical study of H+ translocation along a model proton wire, J. Phys. Chem. 1996, 100, 2519-2527

    Article  CAS  Google Scholar 

  77. Pomes, R.; Roux, B., Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules, Biophys. J. 1998, 75, 33-40

    Article  CAS  Google Scholar 

  78. Zahn, D.; Brickmann, J., Quantum-classical simulation of proton transport via a phos-pholipid bilayer, Phys. Chem. Chem. Phys. 2001, 3, 848-852

    Article  CAS  Google Scholar 

  79. deGroot, B. L.; Frigato, T.; Helms, V.; Grubmuller, J., The mechanism of proton exclusion in the aquaporin-1 water channel, J. Mol. Biol. 2003, 333, 279-293

    Article  CAS  Google Scholar 

  80. Pomes, R.; Roux, B., Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel, Biophys. J. 2002, 82, 2304-2316

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beck, T.L. (2007). Quantum Contributions to Free Energy Changes in Fluids. In: Chipot, C., Pohorille, A. (eds) Free Energy Calculations. Springer Series in CHEMICAL PHYSICS, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38448-9_11

Download citation

Publish with us

Policies and ethics