Skip to main content

Part of the book series: Springer Series in CHEMICAL PHYSICS ((CHEMICAL,volume 86))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirkwood, J. G., Statistical mechanics of fluid mixtures, J. Chem. Phys. 1935, 3,300-313

    CAS  Google Scholar 

  2. Kirkwood, J. G., in Theory of Liquids, Alder, B. J., Ed., Gordon and Breach: New York, 1968

    Google Scholar 

  3. De Donder, T., L’affinit é , Gauthier-Villars: Paris, 1927

    Google Scholar 

  4. Zwanzig, R. W., High-temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys. 1954, 22, 1420-1426

    CAS  Google Scholar 

  5. Landau, L. D., Statistical Physics, Clarendon: Oxford, 1938

    Google Scholar 

  6. Widom, B., Some topics in the theory of fluids, J. Chem. Phys. 1963, 39, 2808-2812

    CAS  Google Scholar 

  7. Owicki, J. C.; Scheraga, H. A., Monte Carlo calculations in the isothermal-isobaric ensemble. 1. Liquid water, J. Am. Chem. Soc. 1977, 99, 7403-7412

    CAS  Google Scholar 

  8. McDonald, I. R.; Singer, K., Machine calculation of thermodynamic properties of a simple fluid at supercritical temperatures, J. Chem. Phys. 1967, 47, 4766-4772

    CAS  Google Scholar 

  9. McDonald, I. R.; Singer, K., Calculation of thermodynamic properties of liquid argon from Lennard-Jones parameters by a Monte Carlo method, Discuss. Faraday Soc. 1967, 43, 40-49

    Google Scholar 

  10. Valleau, J. P.; Card, D. N., Monte Carlo estimation of the free energy by multistage sampling, J. Chem. Phys. 1972, 57, 5457-5462

    CAS  Google Scholar 

  11. Bennett, C. H., Efficient estimation of free energy differences from Monte Carlo data, J. Comput. Phys. 1976, 22, 245-268

    Google Scholar 

  12. Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free energy estimation: Umbrella sampling, J. Comput. Phys. 1977, 23, 187-199

    Google Scholar 

  13. Barker, J. A.; Henderson, D., Perturbation theory and equation of state for fluids: the square-well potential, J. Chem. Phys. 1967, 47, 2856-2861

    CAS  Google Scholar 

  14. Weeks, J. D.; Chandler, D.; Andersen, H. C., Role of repulsive forces in determining the equilibrium structure of simple liquids, J. Phys. Chem. 1971, 54, 5237-5247

    CAS  Google Scholar 

  15. Pratt, L. R.; Chandler, D., Theory of hydrophobic effect, J. Chem. Phys. 1977, 67, 3683-3704

    CAS  Google Scholar 

  16. Lee, J. K.; Barker, J. A.; Abraham, F. F., Theory and Monte Carlo simulation of physical clusters in the imperfect vapor, J. Chem. Phys. 1973, 58, 3166-3180

    CAS  Google Scholar 

  17. Mruzik, M. R.; Abraham, F. F.; Schreiber, D. E.; Pound, G. M., A Monte Carlo study of ion-water clusters, J. Chem. Phys. 1975, 64, 481-491

    Google Scholar 

  18. McGinty, D. J., Molecular dynamics studies of the properties of small clusters of argon atoms, J. Chem. Phys. 1973, 58, 4733-4742

    CAS  Google Scholar 

  19. Mezei, M.; Swaminathan, S.; Beveridge, D. L., Ab initio calculation of the free energy of liquid water, J. Am. Chem. Soc. 1978, 100, 3255-3256

    CAS  Google Scholar 

  20. Mezei, M., Excess free energy of different water models computed by Monte Carlo methods, Mol. Phys. 1982, 47, 1307-1315

    CAS  Google Scholar 

  21. Patey, G. N.; Valleau, J. P., A Monte Carlo method for obtaining the interionic potential of mean force in ionic solution, J. Chem. Phys. 1975, 63, 2334-2339

    CAS  Google Scholar 

  22. Okazaki, S.; Nakanishi, K.; Touhara, H., Monte Carlo studies on the hydrophobic hydration in dilute aqueous solutions on nonpolar molecules, J. Theor. Biol. 1979, 71,2421-2429

    CAS  Google Scholar 

  23. Pangali, C. S.; Rao, M.; Berne, B. J., A Monte Carlo simulation of the hydrophobic effect, J. Chem. Phys. 1979, 71, 2975-2981

    CAS  Google Scholar 

  24. Chipot, C.; Kollman, P. A.; Pearlman, D. A., Alternative approaches to potential of mean force calculations: free energy perturbation versus thermodynamic integra-tion. Case study of some representative nonpolar interactions, J. Comput. Chem. 1996,17,1112-1131

    CAS  Google Scholar 

  25. Postma, J. P. M.; Berendsen, H. J. C.; Haak, J. R., Thermodynamics of cavity formation in water: a molecular dynamics study, Faraday Symp. Chem. Soc. 1982, 17,55-67

    Google Scholar 

  26. Lee, C. Y.; Scott, H. L., The surface tension of water: a Monte Carlo calculation using an umbrella sampling algorithm, J. Chem. Phys. 1980, 73, 4591-4596

    CAS  Google Scholar 

  27. Quirke, N.; Jacucci, G., Energy difference functions in Monte Carlo simulations: application to the calculation of free energy of liquid nitrogen. II. The calculation of fluctuation in Monte Carlo averages, Mol. Phys. 1982, 45, 823-838

    CAS  Google Scholar 

  28. Shing, K. S.; Gubbins, K. E., The chemical potential in dense fluids and fluid mixtures via computer simulation, Mol. Phys. 1982, 46, 1109-1128

    CAS  Google Scholar 

  29. Warshel, A., Dynamics of reactions in polar solvents. Semiclassical trajectory stud-ies of electron transfer and proton transfer reactions, J. Phys. Chem. 1982, 86, 2218-2224

    CAS  Google Scholar 

  30. Northrup, S. H.; Pear, M. R.; Lee, C. Y.; McCammon, J. A.; Karplus, M., Dynamical theory of activated processes in globular proteins, Proc. Natl Acad. Sci. USA 1982, 79,4035-4039

    CAS  Google Scholar 

  31. Tembe, B. L.; McCammon, J. A., Ligand-receptor interactions, Comput. Chem. 1984,8,281-283

    CAS  Google Scholar 

  32. Jorgensen, W. L.; Ravimohan, C., Monte Carlo simulation of differences in free energies of hydration, J. Chem. Phys. 1985, 83, 3050-3054

    CAS  Google Scholar 

  33. Jorgensen, W. L.; Briggs, J. M.; Gao, J., A priori calculations of pKa ’s for organic compounds in water. The pKa of ethane, J. Am. Chem. Soc. 1987, 109, 6857-6858

    CAS  Google Scholar 

  34. Jorgensen, W. L.; Briggs, J. M., A priori pKa calculations and the hydration of organic anions, J. Am. Chem. Soc. 1989, 111, 4190-4197

    CAS  Google Scholar 

  35. Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L. SN 2 reaction profiles in the gas phase and aqueous solution. J. Am. Chem. Soc. 1984, 106, 3049-3050

    CAS  Google Scholar 

  36. Tobias, D. J.; Brooks III, C. L., Calculation of free energy surfaces using the meth-ods of thermodynamic perturbation theory, Chem. Phys. Lett. 1987, 142, 472-476

    CAS  Google Scholar 

  37. Bash, P. A.; Singh, U. C.; Langridge, R.; Kollman, P. A., Free energy calculations by computer simulation, Science 1987, 236, 564-568

    CAS  Google Scholar 

  38. Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex, Science 1987,235,574-576

    CAS  Google Scholar 

  39. Rao, B. G.; Singh, U. C.; Bash, P. A.; Kollman, P. A., Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin, Nature 1987,328,551-554

    CAS  Google Scholar 

  40. Singh, U. C.; Brown, F. K.; Bash, P. A.; Kollman, P. A., An approach to the appli-cation of free energy perturbation methods using molecular dynamics: applications to the transformations of methanol → ethane, oxonium → ammonium, glycine → alanine, and alanine → phenylalanine in aqueous solution and to H3 O+ (H2 O)3 → NH4 (H2 O)3 in the gas phase, J. Am. Chem. Soc. 1987, 109, 1607-1611

    CAS  Google Scholar 

  41. Jarzynski, C., Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 1997,78,2690-2693

    CAS  Google Scholar 

  42. Dang, L. X.; Pearlman, D. A.; Kollman, P. A., Why do A·T base pairs inhibit Z-DNA formation?, Proc. Natl Acad. Sci. USA 1990, 87, 4630-4634

    CAS  Google Scholar 

  43. Fleischman, S. H.; Brooks III, C. L., Thermodynamics of aqueous solvation: Solution properties of alchohols and alkanes, J. Chem. Phys. 1987, 87, 3029-3037

    CAS  Google Scholar 

  44. Lu, N.; Kofke, D. A.; Woolf, T. B., Staging is more important than perturbation method for computation of enthalpy and entropy changes in complex systems, J. Phys. Chem. B 2003, 107, 5598-5611

    CAS  Google Scholar 

  45. Peter, C.; Oostenbrink, C.; van Dorp, A.; van Gunsteren, W. F., Estimating entropies from molecular dynamics simulations, J. Chem. Phys. 2004, 120, 2652-2661

    CAS  Google Scholar 

  46. Straatsma, T. P.; Berendsen, H. J. C., Free energy of ionic hydration: analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations, J. Chem. Phys. 1988, 89, 5876-5886

    CAS  Google Scholar 

  47. Wang, C. X.; Liu, H. Y.; Shi, Y. Y.; Huang, F. H., Calculations of relative free energy surfaces in configuration space using an integration method, Chem. Phys. Lett. 1991, 179, 475-478

    CAS  Google Scholar 

  48. Jorgensen, W. L., in Computer simulation of biomolecular systems: Theoretical and experimental applications, Van Gunsteren, W. F.; Weiner, P. K., Eds. Escom: The Netherlands, 1989, p. 60

    Google Scholar 

  49. Jorgensen, W. L. Free energy calculations, a breakthrough for modeling organic chemistry in solution. Acc. Chem. Res. 1989, 22, 184-189

    CAS  Google Scholar 

  50. Beveridge, D. L.; DiCapua, F. M., Free energy via molecular simulation: applica-tions to chemical and biomolecular systems, Annu. Rev. Biophys. Biophys. 1989, 18,431-492

    CAS  Google Scholar 

  51. Beveridge, D. L.; DiCapua, F. M., Free energy via molecular simulation: a primer, in Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, Van Gunsteren, W. F.; Weiner, P. K., Eds. Escom: The Netherlands, 1989, pp. 1-26

    Google Scholar 

  52. Kollman, P. A., Free energy calculations: applications to chemical and biochemical phenomena, Chem. Rev. 1993, 93, 2395-2417

    CAS  Google Scholar 

  53. Ferrenberg, A. M.; Swendsen, R. H., Optimized Monte Carlo data analysis, Phys. Rev. Lett. 1989, 63, 1195-1198

    CAS  Google Scholar 

  54. Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.; Rosenberg, J. M., The weighted histogram analysis method for free energy calculations on biomolecules. I. The method, J. Comput. Chem. 1992, 13, 1011-1021

    CAS  Google Scholar 

  55. Bartels, C.; Karplus, M., Multidimensional adaptive umbrella sampling: applica-tions to main chain and side chain peptide conformations, J. Comput. Chem. 1997, 18,1450-1462

    CAS  Google Scholar 

  56. Mezei, M., Adaptive umbrella sampling: self-consistent determination of the non-Boltzmann bias, J. Comput. Phys. 1987, 68, 237-248

    Google Scholar 

  57. Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van Gunsteren, W. F., Avoiding singularities and neumerical instabilities in free energy calculations based on molecular simulations, Chem. Phys. Lett. 1994, 222, 529-539

    CAS  Google Scholar 

  58. Hummer, G.; Pratt, L.; Garcia, A. E., Free energy of ionic hydration, J. Phys. Chem. 1996,100,1206-1215

    CAS  Google Scholar 

  59. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys. 1953, 21,1087-1092

    CAS  Google Scholar 

  60. Vorontsov-Velyaminov, P. N.; Elyashevich, A. M.; Morgenshtern, L. A.; Chasovskikh, V. P., Investigation of phase transitions in argon and coulomb gas by the Monte Carlo method using an isothermally isobaric ensemble, High Temp. USSR 1970, 8, 261-268

    Google Scholar 

  61. Adams, D.J., Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid, Mol. Phys. 1975, 29, 307-311

    CAS  Google Scholar 

  62. Frenkel, D.; Ladd, A. J. C., New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres, J. Chem. Phys. 1984, 81, 3188-3193

    CAS  Google Scholar 

  63. Panagiotopoulos, A. Z., Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble, Mol. Phys. 1987, 61, 813-826

    CAS  Google Scholar 

  64. Wilding, N. B., Critical-point and coexistence-curve properties of the Lennard-Jones fluid: a finite-size scaling study, Phys. Rev. E 1995, 52, 602-611

    CAS  Google Scholar 

  65. Kofke, D. A., Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation, Mol. Phys. 1993, 78, 1331-1336

    CAS  Google Scholar 

  66. Pearlman, D. A.; Kollman, P. A., The overlooked bond-stretching contribution in free energy perturbation calculations, J. Chem. Phys. 1991, 94, 4532-4545

    CAS  Google Scholar 

  67. Boresch, S.; Karplus, M., The Jacobian factor in free energy simulations, J. Comp. Chem. 1996, 105, 5145-5154

    CAS  Google Scholar 

  68. Fixman, M., Classical statistical mechanics of constraints: A theorem and applica-tion to polymers, Proc. Natl Acad. Sci. USA 1974, 71, 3050-3053

    Google Scholar 

  69. G o , N.; Scheraga, H. A. S., On the use of classical statistical mechanics in the treatment of polymer chain conformation, Macromolecules 1976, 9, 535-542

    CAS  Google Scholar 

  70. van Gunsteren, W. F. Methods for calculation of free energies and binding con-stants: successes and problems, in Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, Van Gunsteren, W. F.; Weiner, P. K., Eds. Escom: The Netherlands, 1989, pp. 27-59

    Google Scholar 

  71. Carter, E. A.; Ciccotti, G.; Hynes, J. T.; Kapral, R., Constrained reaction coordinate dynamics for the simulation of rare events, Chem. Phys. Lett. 1989, 156, 472-477

    CAS  Google Scholar 

  72. den Otter, W. K.; Briels, W. J., The calculation of free-energy differences by con-strained molecular dynamics simulations, J. Chem. Phys. 1998, 109, 4139-4146

    CAS  Google Scholar 

  73. den Otter, W. K.; Briels, W. J., Free energy from molecular dynamics with multiple constraints, Mol. Phys. 2000, 98, 773-781

    CAS  Google Scholar 

  74. Darve, E.; Pohorille, A., Calculating free energies using average force, J. Chem. Phys. 2001, 115, 9169-9183

    CAS  Google Scholar 

  75. H énin, J.; Chipot, C., Overcoming free energy barriers using unconstrained molecular dynamics simulations, J. Chem. Phys. 2004, 121, 2904-2914

    Google Scholar 

  76. Chipot, C.; H énin, J., Exploring the free energy landscape of a short peptide using an average force, J. Chem. Phys. 2005, 123, 244906

    Google Scholar 

  77. Laio, A.; Parrinello, M., Escaping free energy minima, Proc. Natl Acad. Sci. USA 2002,99,12562-12565

    CAS  Google Scholar 

  78. Berg, B. A.; Neuhaus, T., Multicanonical ensemble: a new approach to simulate first-order phase transitions, Phys. Rev. Lett. 1992, 68, 9-12

    Google Scholar 

  79. Wang, F.; Landau, D. P., An efficient, multiple range random walk algorithm to calculate the density of states, Phys. Rev. Lett. 2001, 86, 2050-2053

    CAS  Google Scholar 

  80. Shell, M. S.; Debenedetti, P. G.; Panagiotopoulos, A. Z., Generalization of the Wang-Landau method for off-lattice simulations, Phys. Rev. E 2002, 90, 056703

    Google Scholar 

  81. Yan, Q.; de Pablo, J. J., Fast calculation of the density of states of a fluid by Monte Carlo simulations, Phys. Rev. Lett. 2003, 90, 035701

    Google Scholar 

  82. Smith, G. R.; Bruce, A. D., A study of the multi-canonical Monte Carlo method, J. Phys. A 1995, 28, 6623-6643

    Google Scholar 

  83. Smith, G. R.; Bruce, A. D., Multicanonical Monte Carlo study of solid-solid phase coexistence in a model colloid, Phys. Rev. E 1996, 53, 6530

    CAS  Google Scholar 

  84. Valleau, J. P. The Coulombic phase transition: density-scaling Monte Carlo. J. Chem. Phys. 1991, 95, 584-589

    CAS  Google Scholar 

  85. Valleau, J. P. Temperature-and-density-scaling Monte-Carlo: methodology and the canonical thermodynamics of Lennard-Jonesium. Mol. Sim. 2005, 31, 223-253

    CAS  Google Scholar 

  86. Kong, X.; Brooks III, C. L., λ-dynamics: a new approach to free energy calcula-tions, J. Chem. Phys. 1996, 105, 2414-2423

    Google Scholar 

  87. Bitetti-Putzer, R.; Yang, W.; Karplus, M., Generalized ensembles serve to improve the convergence of free energy simulations, Chem. Phys. Lett. 2003, 377, 633-641

    CAS  Google Scholar 

  88. Frantz, D.D.; Freeman, D.L.; Doll, J.D., Reducing quasi-ergodic behavior in Monte Carlo simulations by J-walking: applications to atomic clusters, J. Chem. Phys. 1990,93,2769-2784

    CAS  Google Scholar 

  89. Lyubartsev, A. P.; Martsinovski, A. A.; Shevkunov, S. V.; Vorontsov-Velyaminov, P. N., New approach to Monte Carlo calculation of the free energy: method of expanded ensembles, J. Chem. Phys. 1992, 96, 1776-1783

    CAS  Google Scholar 

  90. Marinari, E.; Parisi, G., Simulated tempering: a new Monte Carlo scheme, Europhys. Lett. 1992, 19, 451-458

    CAS  Google Scholar 

  91. Hansmann, U. H. E., Parallel tempering algorithm for conformational studies of biological molecules, Chem. Phys. Lett. 1997, 281, 140-150

    CAS  Google Scholar 

  92. Roitberg, A.; Elber, R., Modeling side chains in peptides and proteins: application of the locally enhanced sampling technique and the simulated annealing methods to find minimum energy conformations, J. Chem. Phys. 1991, 95, 9277-9287

    CAS  Google Scholar 

  93. Verkhivker, G.; Elber, R.; Nowak, W., Locally enhanced sampling in free energy calculations: application of mean field approximation to accurate calculation of free energy differences, J. Chem. Phys. 1992, 97, 7838-7841

    CAS  Google Scholar 

  94. Hummer, G.; Garde, S.; García, A.; Pohorille, A.; Pratt, L., An information theory model of hydrophobic interactions, Proc. Natl Acad. Sci. USA 1996, 93, 8951-8955

    CAS  Google Scholar 

  95. Pohorille, A.; Pratt, L. R., Cavities in molecular liquids and the theory of hydropho-bic solubilities, J. Am. Chem. Soc. 1990, 112, 5066-5074

    CAS  Google Scholar 

  96. Pratt, L. R.; Pohorille, A., Theory of hydrophobicity: Transient cavities in molecular liquids, Proc. Natl Acad. Sci. USA 1992, 89, 2995-2999

    CAS  Google Scholar 

  97. Pratt, L. R.; LaViolette, R. A.; Gomez, M. A.; Gentile, M. E., Quasi-chemical theory for the statistical thermodynamics of the hard-sphere fluid, J. Phys. Chem. B 2001,105,11662-11668

    CAS  Google Scholar 

  98. Asthagiri, D.; Pratt, L. R.; Ashbaugh, H. S., Absolute hydration free energies ofions, ion-water clusters and quasichemical theory, J. Chem. Phys. 2003, 119, 2702-2708

    CAS  Google Scholar 

  99. Jarzynski, C., Equilibrium free-energy differences from nonequilibrium measure-ments: a master-equation approach, Phys. Rev. E 1997, 56, 5018-5035

    CAS  Google Scholar 

  100. Crooks, G. E., Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 1999, 60, 2721-2726

    CAS  Google Scholar 

  101. Ritort, F.; Bustamante, C.; Tinoco Jr., I., A two-state kinetic model for the unfold-ing of single molecules by mechanical force, Proc. Natl Acad. Sci. USA 2002, 99, 13544-13548

    CAS  Google Scholar 

  102. Hummer, G.; Szabo, A., Free energy reconstruction from nonequilibrium single-molecule pulling experiments, Proc. Natl Acad. Sci. USA 2001, 98, 3658-3661

    CAS  Google Scholar 

  103. Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.; Molnar, F.; Wriggers, W.; Schulten, K., Steered molecular dynamics, in Computational Molecular Dynamics: Challenges, Methods, Ideas, Deuflhard, P.; Hermans, J.; Leimkuhler, B.; Mark, A. E.; Skeel, R.; Reich, S., Eds., vol. 4, Lecture Notes in Computational Science and Engineering. Springer: Berlin, Heidelberg, New York, 1998, pp. 39-65

    Google Scholar 

  104. Jensen, M. Ø.; Park, S.; Tajkhorshid, E.; Schulten, K., Energetics of glycerol conduction through aquaglyceroporin GlpF, Proc. Natl Acad. Sci. USA 2002, 99, 6731-6736

    CAS  Google Scholar 

  105. Ytreberg, F. M.; Zuckerman, D. M., Single-ensemble nonequilibrium path-sampling estimates of free energy differences, J. Chem. Phys.2004,120, 10876-10879

    CAS  Google Scholar 

  106. Chipot, C.; Millot, C.; Maigret, B.; Kollman, P. A., Molecular dynamics free energy perturbation calculations. Influence of nonbonded parameters on the free energy of hydration of charged and neutral species, J. Phys. Chem. 1994, 98, 11362-11372

    CAS  Google Scholar 

  107. Zuckerman, D.M.; Woolf, T.B., Theory of a systematic computational error in free energy differences, Phys. Rev. Lett. 2002, 89

    Google Scholar 

  108. Lu, N.; Kofke, D. A.; Woolf, T. B., Improving the efficiency and reliability of free energy perturbation calculations using overlap sampling methods, J. Comput. Chem. 2003, 25, 28-39

    Google Scholar 

  109. Chipot, C., Free energy calculations in biological systems. How useful are they in practice? in New Algorithms for Macromolecular Simulation, Leimkuhler, B.; Chipot, C.; Elber, R.; Laaksonen, A.; Mark, A. E.; Schlick, T.; Sch ütte, C.; Skeel, R., Eds., vol. 49. Springer: Berlin, Heidelberg, New York, 2005, pp. 183-209

    Google Scholar 

  110. Aqvist, J.; Medina, C.; Sammuelsson, J. E., A new method for predicting binding affinity in computer-aided drug design, Protein Eng. 1994, 7, 385-391

    CAS  Google Scholar 

  111. Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A., The statistical-thermodynamic basis for computation of binding affinities: a critical review, Biophys. J. 1997, 72, 1047-1069

    CAS  Google Scholar 

  112. Hermans, J.; Wang, L., Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 lysozyme, J. Am. Chem. Soc. 1997, 119, 2707-2714

    CAS  Google Scholar 

  113. Duffy, E. M.; Jorgensen, W. L., Prediction of properties from simulations: free energies of solvation in hexadecane, octanol and water, J. Am. Chem. Soc. 2000, 122,2878-2888

    CAS  Google Scholar 

  114. Jorgensen, W. L.; Ruiz-Caro, J.; Tirado-Rives, J.; Basavapathruni, A.; Anderson, K. S.; Hamilton, A. D. Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2006, 16, 663-667

    CAS  Google Scholar 

  115. Pearlman, D. A.; Charifson, P. S., Are free energy calculations useful in practice? A comparison with rapid scoring functions for the p38 MAP kinase protein system, J. Med. Chem. 2001, 44, 3417-3423

    CAS  Google Scholar 

  116. Smith, P. E.; van Gunsteren, W. F., Predictions of free energy differences from a single simulation of the initial state, J. Chem. Phys. 1994, 100, 577-585

    CAS  Google Scholar 

  117. Oostenbrink, C.; van Gunsteren, W. F., Free energies of ligand binding for structurally diverse compounds, Proc. Natl Acad. Sci. USA 2005, 102, 6750-6754

    CAS  Google Scholar 

  118. Amadei, A.; Apol, M. E. F.; Berendsen, H. J. C., The quasi-Gaussian entropy theory: free energy calculations based on the potential energy distribution function, J. Chem. Phys. 1996, 104, 1560-1574

    CAS  Google Scholar 

  119. Simonson, T.; Archontis, G.; Karplus, M., Continuum treatment of long-range interactions in free energy calculations. Application to protein-ligand binding, J. Phys. Chem. B 1997, 101, 8349-8362

    Google Scholar 

  120. Swanson, J. M. J.; Henchman, R. H.; McCammon, J. A., Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy, Biophys. J. 2004, 86, 67-74

    CAS  Google Scholar 

  121. Feynman, R. P., Statistical Mechanics, Benjamin/Cummings: London, 1972

    Google Scholar 

  122. Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals, McGraw-Hill: New York, 1965

    Google Scholar 

  123. Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, World Scientific: Singapore, 1995

    Google Scholar 

  124. Beck, T. L., Quantum path integral extension of Widom’s test particle method for chemical potentials with application to isotope effects on hydrogen solubilities in model solids, J. Chem. Phys. 1992, 96, 7175-7177

    CAS  Google Scholar 

  125. Beck, T. L.; Marchioro, T. L., The quantum potential distribution theorem, in Path integrals from meV to MeV: Tutzing 1992 (1993), Grabert, H.; Inomata, A.; Schulman, L.; Weiss, U., Eds., World Scientific: Singapore, pp. 238-243

    Google Scholar 

  126. Wang, Q.; Johnson, J. K.; Broughton, J. Q., Thermodynamic properties and phase equilibrium of fluid hydrogen from path integral simulations, Mol. Phys. 1996, 89, 1105-1119

    CAS  Google Scholar 

  127. Wang, Q.; Johnson, J. K.; Broughton, J. Q., Path integral grand canonical Monte Carlo, J. Chem. Phys. 1997, 107, 5108-5117

    CAS  Google Scholar 

  128. Simonson, T.; Archontis, G.; Karplus, M., Free energy simulations come of age: protein-ligand recognition, Acc. Chem. Res. 2002, 35, 430-437

    CAS  Google Scholar 

  129. Chipot, C.; Pearlman, D. A., Free energy calculations. the long and winding gilded road, Mol. Simul. 2002, 28, 1-12

    CAS  Google Scholar 

  130. Berne, B. J.; Straub, J. E., Novel methods of sampling phase space in the simulation of biological systems, Curr. Opin. Struct. Biol. 1997, 7, 181-189

    CAS  Google Scholar 

  131. Rodinger, T.; Pom ès, R., Enhancing the accuracy, the efficiency and the scope of free energy simulations, Curr. Opin. Struct. Biol. 2005, 15, 164-170

    CAS  Google Scholar 

  132. Hill, T. L., An Introduction to Statistical Thermodynamics, Dover: New York, 1986

    Google Scholar 

  133. McQuarrie, D. A., Statistical Mechanics, Harper and Row: New York, 1976

    Google Scholar 

  134. Chandler, D., Introduction to Modern Statistical Mechanics, Oxford University Press: Oxford, 1987

    Google Scholar 

  135. Frenkel, D.; Smit, B., Understanding Molecular Simulations: From Algorithms to Applications, Academic: San Diego, 1996

    Google Scholar 

  136. Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids, Clarendon: Oxford, 1987

    Google Scholar 

  137. Pearson, E. M.; Halicioglu, T.; Tiller, W. A., Laplace-transform technique for deriving thermodynamic equations from the classical microcanonical ensemble, Phys. Rev. A 1988, 32, 3030-3039

    Google Scholar 

  138. Cagin, T.; Ray, J. R., Fundamental treatment of molecular-dynamics ensembles, Phys. Rev. A 1988, 37, 247-251

    CAS  Google Scholar 

  139. Ruelle, D., Statistical Mechanics: Rigorous Results, World Scientific: Singapore, 1999

    Google Scholar 

  140. Ray, J. R., Microcanonical ensemble Monte Carlo method, Phys. Rev. A 1991, 44, 4061-4064

    CAS  Google Scholar 

  141. Lustig, R., Microcanonical Monte Carlo simulation of thermodynamic properties, J. Chem. Phys. 1998, 109, 8816-8828

    CAS  Google Scholar 

  142. Tabor, M. Chaos and Integrability in Nonlinear Dynamics: An Introduction. Wiley: New York, 1989

    Google Scholar 

  143. Srinivasan, R., Importance Sampling, Springer: Berlin, Heidelberg, New York, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chipot, C., Shell, M.S., Pohorille, A. (2007). Introduction. In: Chipot, C., Pohorille, A. (eds) Free Energy Calculations. Springer Series in CHEMICAL PHYSICS, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38448-9_1

Download citation

Publish with us

Policies and ethics