Skip to main content

Size-Tunable Exchange Interaction in InAs/GaAs Quantum Dots

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 46))

Abstract

Single epitaxial quantum dots are promising candidates for the realization of quantum information schemes due to their atom-like electronic properties and the ease of integration into optoelectronic devices. Prerequisite for realistic applications is the ability to control the excitonic energies of the dot. A major step in this direction was recently reached by advanced self-organized quantum-dot growth, yielding ensembles of equally shaped InAs/GaAs dots with a multimodal size distribution. The well-defined sizes of spectrally well separated subensembles enable a direct correlation of structural and excitonic properties, representing an ideal model system to unravel the complex interplay of Coulomb interaction and the quantum dot’s confining potential that depends on size, shape, and composition. In this paper we focus on the exciton-biexciton system with emphasis on the excitonic fine-structure splitting. Across the whole range of size variations within our multimodal quantum dot distribution a systematic trend from +520µeV to −80µeV is found for decreasing dot size. To identify the underlying effects calculations of the fine-structure splitting are performed. A systematic variation of the structural and piezoelectric properties of the modeled quantum dots excludes shape anisotropy and tags piezoelectricity as a key parameter controlling the fine-structure splitting in our quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. H. Bennett and G. Brassard, in Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, Bangalore India, p. 175 (1984).

    Google Scholar 

  2. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000).

    Article  ADS  Google Scholar 

  3. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Phys. Rev. Lett. 76, 3005 (1996).

    Article  ADS  Google Scholar 

  4. D. Bimberg, Advances in Sol. State Phys. 17, 195 (1977).

    Article  Google Scholar 

  5. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, Phys. Rev. B 65, 195315 (2002).

    Article  ADS  Google Scholar 

  6. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).

    Article  ADS  Google Scholar 

  7. O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999).

    Article  ADS  Google Scholar 

  8. V. A. Shchukin, N. N. Ledentsov, P. S. Kop’ev, and D. Bimberg, Phys. Rev. Lett. 75, 2968 (1995).

    Article  ADS  Google Scholar 

  9. N. Moll, M. Scheffler, and E. Pehlke, Phys. Rev. B 58, 4566 (1998).

    Article  ADS  Google Scholar 

  10. Q. K. K. Liu, N. Moll, M. Scheffler, and E. Pehlke, Phys. Rev. B 60, 17008 (1999).

    Article  ADS  Google Scholar 

  11. G. Costantini, C. Manzano, R. Songmuang, O. G. Schmidt, and K. Kern, Appl. Phys. Lett. 82, 3194 (2003).

    Article  ADS  Google Scholar 

  12. S. Guha, A. Madhukar, and K. C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).

    Article  ADS  Google Scholar 

  13. M. Tabuchi, S. Noda, and A. Sasaki, in S. Namba, C. Hamaguchi, and T. Ando (Eds.), Science and Technology of Mesoscopic Structures, Springer, Tokyo 1992.

    Google Scholar 

  14. U. W. Pohl, K. Pötschke, A. Schliwa, F. Guffarth, D. Bimberg, N. D. Zakharov, P. Werner, M. B. Lifshits, V. A. Shchukin, and D. E. Jesson, Phys. Rev. B 72, 245332 (2005).

    Article  ADS  Google Scholar 

  15. M. B. Lifshits, V. A. Shchukin, D. Bimberg, and D. E. Jesson, Proc. 13th Int. Symposium on Nanostructures: Physics and Technology, St. Petersburg, Russia 2005 (Ioffe Physico-Technical Institute, St. Petersburg, 2005) pp. 308–309.

    Google Scholar 

  16. U. W. Pohl, K. Pötschke, A. Schliwa, M. B. Lifshits, V. A. Shchukin, D. E. Jesson, and D. Bimberg, Physica E 32, 9 (2006).

    Article  ADS  Google Scholar 

  17. M. Colocci, F. Bogani, L. Carraresi, R. Mattolini, A. Bosacchi, S. Franchi, P. Frigeri, M. Rosa-Clot, and S. Taddei, Appl. Phys. Lett. 70, 3140 (1997).

    Article  ADS  Google Scholar 

  18. A. Gustafsson, D. Hessmann, L. Samuelson, J. F. Carlin, R. Houdré, and A. Rudra, J. Crystal Growth 147, 27 (1995).

    Article  ADS  Google Scholar 

  19. S. Raymond, S. Studenikin, S.-J. Cheng, M. Pioro-Ladrière, M. Ciorga, P. J. Poole, and M. D. Robertson, Semicond. Sci. Technol. 18, 385 (2003).

    Article  ADS  Google Scholar 

  20. U. W. Pohl, K. Pötschke, I. Kaiander, J.-T. Zettler, and D. Bimberg, J. Crystal Growth 272, 143 (2004).

    Article  ADS  Google Scholar 

  21. U. W. Pohl, K. Pötschke, M. B. Lifshits, V. A. Shchukin, D. E. Jesson, and D. Bimberg, Appl. Surf. Sci. (2006), in print.

    Google Scholar 

  22. U. W. Pohl, R. Seguin, S. Rodt, A. Schliwa, K. Pötschke, and D. Bimberg, Physica E (2006), in print.

    Google Scholar 

  23. R. Timm, A. Lenz, H. Eisele, T.-Y. Kim, F. Streicher, K. Pötschke, U.W. Pohl, D. Bimberg, and M. Dähne, Physica E 32, 25 (2006).

    Article  ADS  Google Scholar 

  24. S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, Phys. Rev. B 68, 035331 (2003).

    Article  ADS  Google Scholar 

  25. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, Phys. Rev. B 61, 9944 (2000).

    Article  ADS  Google Scholar 

  26. K. Kowalik, O. Krebs, A. Lemaître, S. Laurent, P. Senellart, P. Voisin, and J. A. Gaj, Appl. Phys. Lett. 86, 041907 (2005).

    Article  ADS  Google Scholar 

  27. A. S. Lenihan, M. V. Gurudev Dutt, D. G. Steel, S. Gosh, and P. K. Bhattacharya, Phys. Rev. Lett. 88, 223601 (2002).

    Article  ADS  Google Scholar 

  28. R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, Phys. Rev. B 72, 113305 (2005).

    Article  ADS  Google Scholar 

  29. R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U.W. Pohl, and D. Bimberg, Phys. Rev. Lett. 95, 257402 (2005).

    Article  ADS  Google Scholar 

  30. V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kümmell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, Phys. Rev. Lett. 82, 1780 (1999).

    Article  ADS  Google Scholar 

  31. R. Songmuang, S. Kiravittaya, and O. G. Schmidt, J. Crystal Growth 249, 416 (2003).

    Article  ADS  Google Scholar 

  32. G. Bester, S. Nair, and A. Zunger, Rev. B 67, 161306(R) (2003).

    Article  Google Scholar 

  33. G. Bester and A. Zunger, Phys. Rev. B 71, 045318 (2005).

    Article  ADS  Google Scholar 

  34. S. Rodt, A. Schliwa, K. Pötschke, F. Guffarth, and D. Bimberg, Phys. Rev. B 71, 155325 (2005).

    Article  ADS  Google Scholar 

  35. O. Stier, R. Heitz, A. Schliwa, and D. Bimberg, Phys. Stat. Sol. (a) 190, 477 (2002).

    Article  ADS  Google Scholar 

  36. R. Heitz, F. Guffarth, K. Pötschke, A. Schliwa, D. Bimberg, N. D. Zakharov, and P. Werner, Phys. Rev. B 71, 045325 (2005).

    Article  ADS  Google Scholar 

  37. R. Zimmermann, A. Schliwa et al., to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pohl, U.W., Schliwa, A., Seguin, R., Rodt, S., Pötschke, K., Bimberg, D. (2008). Size-Tunable Exchange Interaction in InAs/GaAs Quantum Dots. In: Advances in Solid State Physics. Advances in Solid State Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38235-5_4

Download citation

Publish with us

Policies and ethics