Skip to main content
  • 4285 Accesses

Auszug

Vom ersten bis zum letzten Atemzug stehen wir über unseren Respirationstrakt mit der Atmosphäre in aktiver Verbindung. Die Lunge ist damit das weitaus größte (ca. 100 m2 Oberfläche) und intensivste Kontaktorgan unseres Körpers zur atmosphärischen Umwelt. Dabei werden täglich ca. 10.000–20.000 und jährlich 3–6 Mio. l Luft filtriert, um den lebensnotwendigen Sauerstoff aufzunehmen und eine Vielzahl von flüchtigen Stoffwechselprodukten, vor allem Kohlendioxyd, abzugeben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Deutsche Forschungsgemeinschaft (DFG) (1998) Mitteilung 34 der Senatskommission zur Prüfung schädlicher Arbeitsstoffe, MAK-und BAT-Werteliste, VCH Weinheim

    Google Scholar 

  • Downs SH, Schindler C, Liu S et al. (2007) Reduced Exposure to PM10 and Attenuated Age-Related Decline in Lung Function. N Engl J Med 357:2339–2347

    Article  Google Scholar 

  • Kreyling WG, Semmler M, Möller W (2005) Aerosole und Nanopartikel. Atemw-Lungenkrkh 31(8):411–419

    CAS  Google Scholar 

  • Müller KM, Schmitz I (2005) Gas-und Partikelphase am Beispiel der Schweißerlunge. Atemw-Lungenkrkh 31(12):602–615

    Google Scholar 

  • Siekmeier R, Scheuch G (2005) Systemische Therapie mit Aerosolen. Atemw-Lungenkrkh 31(8):391–410

    CAS  Google Scholar 

  • Umweltbundesamt (2005) Hintergrundpapier zum Thema Staub/Feinstaub (PM). Berlin: Umweltbundesamt: p. 1–23

    Google Scholar 

  • WHO (2003) Report on a WHO Working Group: Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide. World Health Organization p. 1–94

    Google Scholar 

Literatur

  • Crystal RG, West JB, Weibel ER, Barnes PJ (eds) (1997) The lung, vol 1 and 2, 2nd edn. Lippincott-Raven, Philadelphia New York

    Google Scholar 

  • Benninghoff A, Drenckhahn D (2002) Anatomie — Makroskopische Anatomie, Histologie, Embryologie, Zellbiologie, Bd. 1, 16. Aufl. Urban & Fischer in Elsevier, München

    Google Scholar 

  • Benninghoff A, Drenckhahn D (2004) Anatomie — Makroskopische Anatomie, Histologie, Embryologie, Zellbiologie, Bd. 2, 16. Aufl. Urban & Fischer in Elsevier, München

    Google Scholar 

  • Blank F, Gehr P, Rothen-Rutishauser BM (2007) Cellular interplay after particle exposure visualized in an epithelial airway model. Amer J Respir Cell Molec Biol 36:669–677

    Article  CAS  Google Scholar 

  • Donaldson K, Borm P (2007) Particle Toxicology. CRC Press, Boca Raton

    Google Scholar 

  • Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140

    Article  PubMed  CAS  Google Scholar 

  • Gehr P, Green FHY, Geiser M, Im Hof V, Lee MM, Schürch S (1996) Airway surfactant, a primary defense barrier: mechanical and immunological aspects. J Aerosol Med 9:163–181

    Article  PubMed  CAS  Google Scholar 

  • Gehr P, Heyder J (eds) (2000) Particle-lung interaction. In: Lenfant C (ed) Lung biology in health and disease. Dekker, New York

    Google Scholar 

  • Geiser M, Rothen-Rutishauser BM, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by non-phagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Article  PubMed  Google Scholar 

  • ICRP (International Commission for Radiological Protection) (1994) Human respiratory tract model for radiological protection. Pergamon & Elsevier, Kidlington (ICRP Publication 66)

    Google Scholar 

  • Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJG (2004) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124

    Article  PubMed  Google Scholar 

  • Parent RA (ed) (1992) Comparative biology of the normal lung, vol I. Treatise on pulmonary toxicology. CRC, Boca Raton

    Google Scholar 

  • Schürch S, Gehr P, Im Hof V, Geiser M, Green F (1990): Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 80:17–32

    Article  PubMed  Google Scholar 

  • Weibel ER (1984) The pathway of oxygen. Structure and function in the mammalian respiratory system. Harvard Univ Press, Cambridge

    Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Academic Press, New York

    Google Scholar 

  • Weibel ER, Gil J (1977) Structure-function relationships at the alveolar level. In: West JB (ed) Bioengeneering aspects of the lung. Dekker, New York, pp 1–81

    Google Scholar 

  • West JB (1995) Respiratory physiology — the essentials, 5th ed. Williams & Wilkins, Baltimore

    Google Scholar 

Literatur

  • Boron WF, Boulpaep EL (2003) Medical Physiology. Saunders, Philadelphia

    Google Scholar 

  • Vaupel P, Thews G (2005) Vegetative Physiologie. Springer, Heidelberg

    Google Scholar 

  • Fishman AP (1998) Fishman’s pulmonary diseases and disorders. Mc-Graw-Hill, New York

    Google Scholar 

  • Weissmann N, Sommer N, Schermuly RT, Ghofrani HA, Seeger W, Grimminger F (2006) Oxygen sensors in hypoxic pulmonary vasoconstriction. Cardiovasc Res 71:620–629

    Article  PubMed  CAS  Google Scholar 

  • Weissmann N, Dietrich A, Fuchs B et al. (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 103:19093–19098

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Gehr, P., Matthys, H., Staats, R., Weißmann, N. (2008). Einleitung. In: Matthys, H., Seeger, W. (eds) Klinische Pneumologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37692-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37692-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37682-8

  • Online ISBN: 978-3-540-37692-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics