Skip to main content

High-Frequency Dynamic Force Microscopy

  • Chapter
Applied Scanning Probe Methods V

Part of the book series: NanoScience and Technology ((NANO))

  • 1353 Accesses

5.4 Summary and Outlook

This chapter focused on the emerging trend of high-frequency DFM using small cantilevers or higher vibration modes. The key elements were:

  1. 1.

    Focusing of the laser beam to allow the use of micron-sized cantilevers

  2. 2.

    High-frequency detection where the signal-to-noise ratio is obtained by narrow-band homodyne methods or heterodyne methods

  3. 3.

    Photothermal excitation of the cantilever vibration, which is effective above 10 MHz, and is also effective in water for avoiding spurious signals.

  4. 4.

    Cantilever fabrication methods to realize cantilevers with a spring constant in the 100–1000N/m range, and with a natural frequency in the megahertz range.

The combination of high-frequency DFM and small and stiff cantilevers allows a wider range of imaging parameters to be chosen, resulting in higher resolution and the choice of interaction between the tip and the sample, and represents the future of DFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930

    Article  Google Scholar 

  2. Giessibl FJ (1995) Atomic resolution of the silicon(111) 7 × 7 surface by atomic force microscopy. Science 267:68

    Article  CAS  Google Scholar 

  3. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75:949

    Article  CAS  Google Scholar 

  4. Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668

    Article  Google Scholar 

  5. Akamine S, Barrett RC, Quate CF (1990) Improved atomic force microscope images using microcantilevers with sharp tips. Appl Phys Lett 57:316

    Article  CAS  Google Scholar 

  6. Carr DW, Craighead HG (1997) Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography. J Vac Sci Technol B 15(6):2760–2763

    Article  CAS  Google Scholar 

  7. Waters RL, Aklufi ME (2002) Micromachined Fabry-Perot interferometer for motion detection. Appl Phys Lett 81:3320

    Article  CAS  Google Scholar 

  8. Hoogenboom BW, Frederix PLTM, Yang JL, Martin S. Pellmont Y, Steinacher M, Zaech S, Langenbach E, Heimbeck H-J, Engel A, Hug HJ (2005) A Fabry-Perot interferometer for micrometer-sized cantilevers. Appl Phys Lett 86:074101

    Article  Google Scholar 

  9. Hashiguchi G, Mimaura H (1995) New fabrication method and electrical characteristics of conical silicon field emitters. Jpn J Appl Phys 34:1493

    Article  CAS  Google Scholar 

  10. Hashiguchi G, Mimaura H (1994) Fabrication of silicon quantum wires using separation by implanted oxygen wafer. Jpn J Appl Phys 33:L1649

    Article  CAS  Google Scholar 

  11. Kawakatsu H, Saya D, Kato A, Fukushima K, Toshiyoshi H, Fujita H (2002) Millions of cantilevers for atomic force microscopy. Rev Sci Instrum 73:1188

    Article  CAS  Google Scholar 

  12. Kawakatsu H, Saya D, Fukushima K, Toshiyoshi H, Fujita H (2000) Fabrication of a silicon based nanometric oscillator with a tip form mass for scanning force microscopy operating in the GHz range. J Vac Sci Technol B 16:607

    Article  Google Scholar 

  13. Kawakatsu H, Toshiyoshi H, Saya D, Fujita H (1999) A silicon based nanometric oscillator for scanning force microscopy operating in the 100 MHz range. Jpn J Appl Phys B 6:3962

    Article  Google Scholar 

  14. Saya D, Fukushima K, Toshiyoshi H, Fujita H, Hashiguchi G, Kawakatsu H (2000) Fabrication of silicon-based filiform-necked nanometric oscillators. Jpn J Appl Phys 39:3793

    Article  CAS  Google Scholar 

  15. Saya D, Fukushima K, Toshiyoshi H, Hashiguchi G, Fujita H, Kawakatsu H (2002) Fabrication of single-crystal Si cantilever array. Sens Actuators A 95:281

    Article  Google Scholar 

  16. Hashiguchi G, Goda T, Hosogi M, Hirano K, Kaji N, Baba Y, Kakushima K, Fujita H (2003) DNA manipulation and retrieval from an aqueous solution with micromachined nanotweezers. Anal Chem 75:4347–4350

    Article  CAS  Google Scholar 

  17. Kim GM, Kawai S, Nagashio M, Kawakatsu H, Brugger J (2004) Nanomechanical structures with 91 MHz resonance frequency fabricated by local deposition and dry etching. J Vac Sci Technol B 22:1658

    Article  CAS  Google Scholar 

  18. Yang JL, Despont M, Drechsler U, Hoogenboom BW, Frederix PLTM, Martin S, Engel A, Vettiger P, Hug HJ (2005) Miniaturaized single-crystal silicon cantilevers for scanning force microscopy. Appl Phys Lett 86:134101

    Article  Google Scholar 

  19. Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98:12468

    Article  CAS  Google Scholar 

  20. Olympus Co., Hachioji, Tokyo

    Google Scholar 

  21. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57

    Article  Google Scholar 

  22. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope force mapping and profiling on a sub 100-Ã… scale. J Appl Phys 61:4723

    Article  CAS  Google Scholar 

  23. Rugar D, Mamin HJ, Erlandsson R, Stern JE, Terris BD (1988) Force microscope using a fiber-optic displacement sensor. Rev Sci Instrum 59:2337

    Article  CAS  Google Scholar 

  24. Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53:1045

    Article  Google Scholar 

  25. Kawakatsu H, Saito T (1996) Scanning force microscopy with two optical levers for detection of deformations of the cantilever. J Vac Sci Technol B 14:872–876

    Article  CAS  Google Scholar 

  26. Kawakatsu H, Kawai S, Saya D, Nagashio M, Kobayashi D, Toshiyoshi H, Fujita H (2002) Towards atomic force microscopy up to 100 MHz. Rev Sci Instrum 73:2317

    Article  CAS  Google Scholar 

  27. Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7 × 7) surface observed by atomic force microscopy. Science 289:422

    Article  CAS  Google Scholar 

  28. Hembacher S, Giessibl FJ, Mannhart J (2004) Force microscopy with Light-Atom probes. Science 305:380

    Article  CAS  Google Scholar 

  29. Fukuma T Kobayashi K, Matsushige K, Yamada H (2005) True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett 87:034101

    Article  Google Scholar 

  30. Umeda N, Ishizaki S, Uwai H (1991) Scanning attractive force microscope using photothermal vibration. J Vac Sci Technol B 9:1318

    Article  CAS  Google Scholar 

  31. Ando T, Uchihashi T, Kodera NN, Miyagi A, Nakakita R, Yamashita H, Sakashita M (2006) High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work. Jpn J Appl Phys 45:1897

    Article  CAS  Google Scholar 

  32. Kobayashi D, Kawai S, Kawakatsu H (2004) New FM detection techniques for scanning probe microscopy. Jpn J Appl Phys 43:4566

    Article  CAS  Google Scholar 

  33. Kawai S, Kitamura S, Kobayashi D, Meguro S, Kawakatsu H (2005) An ultra-small amplitude operation of dynamic force microscopy with second flexural mode. Appl Phys Lett 86:193107

    Article  Google Scholar 

  34. Kawai S, Rose F, Ishii T, Kawakatsu H, Atomically resolved observation of the quenched Si(111) surface with small amplitude dynamic force microscopy. J Appl Phys 99:104312

    Google Scholar 

  35. Kawai S, Kawakatsu H (2006) Atomically resolved dynamic force microscopy operating at 4.7 MHz. Appl Phys Lett 88:133103

    Article  Google Scholar 

  36. Kawai S, Kawakatsu H, Atomically resolved amplitude modulation dynamic force microscopy with a high resonance and mechanical quality factor cantilever. Appl Phys Lett 89:013108

    Google Scholar 

  37. Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Fotiadis D, Engel A (2006) Quantitative dynamic-mode scanning force microscopy in liquid. Appl Phys Lett 88:193109

    Article  Google Scholar 

  38. Kawai S, Kawakatsu H (2006) Mechanical atom manipulation with small amplitude dynamic force microscopy. Appl Phys Lett 89:023113

    Article  Google Scholar 

  39. Kawai S, Kitamura S, Kobayashi D, Kawakatsu H (2005) Dynamic lateral force microscopy with true atomic resolution. Appl Phys Lett 87:173105

    Article  Google Scholar 

  40. Giessibl FJ, Herz M, Mannhart J (2002) Friction traced to the single atom. Proc Natl Acad Sci USA 99:12006

    Article  CAS  Google Scholar 

  41. Kawai S, Sasaki N, Oshima K, Kawakatsu H, Lateral force gradient mapping and its simulation (unpublished)

    Google Scholar 

  42. Yamashita K, Sun W, Kakushima K, Fujita H, Toshiyoshi H (2006) RF microelectromechanical system device with a lateral field-emission detector. J Vac Sci Technol B 24:927

    Article  CAS  Google Scholar 

  43. Strozewski KJ, Mc Bride SE, Wetsel GC (1992) High-frequency surface-displacement detection using an STM as a mixer demdulator. Ultramicroscopy 42:388–392

    Article  Google Scholar 

  44. Voigt PU, Koch R (2002) Quantitative geometry of the Rayleigh wave oscillation ellipse by surface acoustic wave scanning tunneling microscopy. J Appl Phys 92:7160

    Article  CAS  Google Scholar 

  45. Volodin A, Buntinx D, Ahlskog M, Fonseca A, Nagy JB, Van Haesendonck C (2004) Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett 4:1775

    Article  CAS  Google Scholar 

  46. Dupas E, Gremaud G, Kulik A, Loubet J-L (2001) High-frequency mechanical spectroscopy with an atomic force microscope. Rev Sci Instrum 72:3891

    Article  CAS  Google Scholar 

  47. Fukuma T, Kimura K, Kobayashi K, Matsushige K, Yamada H (2004) Dynamic force microscopy at high cantilever resonance frequencies using heterodyne optical beam deflection method. Appl Phys Lett 85:8287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawakatsu, H. (2007). High-Frequency Dynamic Force Microscopy. In: Bhushan, B., Kawata, S., Fuchs, H. (eds) Applied Scanning Probe Methods V. NanoScience and Technology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37316-2_5

Download citation

Publish with us

Policies and ethics