Skip to main content

Fundamentals of Magnetic Field Effects

  • Chapter
Magneto-Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 89))

  • 857 Accesses

Abstract

Magnetic energy is smaller than thermal energy or electric energy. The magnetic energy of an electron spin of 1 Bohr magneton in a field of IT corresponds to thermal energy of 0.67 K or electric energy of 58 µV. Furthermore, thermal disturbance reduces magnetic energy in nonferromagnetic systems. It is 12.5 mJ mol−1 in 1 T at 300 K for a paramagnetic system. This is about 10−5 the thermal energy of 2.5 kJ mol−1 at the same temperature. Consequently, it does not seem that magnetic field effects (MFEs) occur at ordinary or elevated temperatures at which materials are processed. However, a variety of MFEs were found first in selected systems and later in popular systems by utilizing appropriate mechanisms based on quantum mechanics, electromagnetism and magnetic properties of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Matsuzaki, S. Nagakura, Chem. Lett., 1974. 679.

    Google Scholar 

  2. Y. Tanimoto, H. Hayashi, S. Nagakura, H. Sakuragi, K. Tokumaru, Chem. Phys. Lett., 41, 267 (1976).

    Article  ADS  Google Scholar 

  3. M. Yamaguchi, H. Nomura, I. Yamamoto, T. Ohta, T. Goto, Phys. Lett., A 126, 133 (1987).

    ADS  Google Scholar 

  4. T. Kakeshita, K. Shimizu, S. Funada, M. Date, Acta Met., 33, 1381 (1985).

    Article  Google Scholar 

  5. E. Beaugnon, R. Tournier, Nature, 349, 470 (1991).

    Article  ADS  Google Scholar 

  6. S. Ueno, M. Iwasaka, IEEE Trans. Mag., 30, 4698 (1994).

    Article  ADS  Google Scholar 

  7. Y. Ikezoe, N. Hirota, J. Nakagawa, K. Kitazawa, Nature, 393, 749 (1998).

    Article  ADS  Google Scholar 

  8. J. Torbet, J.-M. Freyssinet, G. Hudry-Clergeon, Nature, 289, 91 (1981).

    Article  ADS  Google Scholar 

  9. H. Sata, T. Kimura, S. Ogawa, M. Yamato, E. Ito, Polymer, 37, 1879 (1996).

    Article  Google Scholar 

  10. Y. Matsumoto, I. Yamamoto, M. Yamaguchi, Y. Shimazu, F. Ishikawa, Jpn. J. Appl. Phys., 36, L1397 (1997).

    Article  ADS  Google Scholar 

  11. R. Aogaki, K. Fueki, T. Mukaibo, Denki Kagaku, 43, 504 (1975).

    Google Scholar 

  12. I. Mogi, S. Okubo, Y. Nakagawa, J. Phys. Soc. Jpn., 60, 3200 (1991).

    Article  ADS  Google Scholar 

  13. S. Ozeki, H. Uchiyama, J. Phys. Chem., 92, 6485 (1988).

    Article  Google Scholar 

  14. I. Yamamoto, H. Tega, M. Yamaguchi, Trans. Mat. Res. Soc. Jpn., 18B, 1201 (1994).

    Google Scholar 

  15. H. Hosoda, H. Mori, N. Sogoshi, A. Nagasawa, S. Nakabayashi, J. Phys. Chem. B, 108, 1461 (2004).

    Google Scholar 

  16. J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford (1985).

    Google Scholar 

  17. J. A. Osborn, Phys. Rev., 67, 351 (1945).

    Article  ADS  Google Scholar 

  18. E. C. Stoner, Phil. Mag. Ser., 7, 36, 803 (1945).

    Google Scholar 

References

  1. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1984).

    Google Scholar 

  2. E. A. Guggenheim, Thermodynamics, North-Holland, Amsterdam (1977).

    Google Scholar 

  3. M. Yamaguchi, I. Yamamoto, Dynamic Spin Chemistry (S. Nagakura, H. Hayashi, T. Azumi, eds.), pp. 131–151, Kodansha, Tokyo (1998).

    Google Scholar 

  4. I. Yamamoto, K. Ishikawa, S. Mizusaki, Y. Shimazu, M. Yamaguchi, F. Ishikawa, T. Goto, T. Takamasu, Jpn. J. Appl. Phys., 41, 416 (2002).

    Article  ADS  Google Scholar 

  5. M. Yamaguchi, I. Yamamoto, F. Ishikawa, T. Goto, S. Miura, J. Alloys Compounds, 253–254, 191 (1997).

    Article  Google Scholar 

  6. I. Yamamoto, M. Fujino, M. Yamaguchi, F. Ishikawa, T. Goto, S. Miura, J. Alloys Compounds, 293–295, 251 (1999).

    Article  Google Scholar 

References

  1. K. Kitazawa (supervised), S. Ozeki, Y. Tanimoto, M. Yamaguchi (eds.), Jikikagaku (Magneto-Science), IPC, Tokyo (2002) (in Japanese).

    Google Scholar 

  2. Y. Tanimoto, R. Yamaguchi, Y. Kanazawa, M. Fujiwara, Bull. Chem. Soc. Jpn., 75, 1133 (2002).

    Article  Google Scholar 

  3. M. Fujiwara, T. Chidiwa, Y. Tanimoto, J. Phys. Chem. B, 104, 8075 (2000).

    Article  Google Scholar 

  4. A. Weiss, H. Witte, Magnetochemie, Chapt. 5, Verlag Chemie, Weinheim (1973) (in German).

    Google Scholar 

  5. T. Kimura, M. Yamato, Y. Koshimizu, M. Koike, T. Kawai, Langmuir, 16, 858 (2000).

    Article  Google Scholar 

  6. G. B. Jeffery, Proc. R. Soc. London, A102, 161 (1922).

    ADS  Google Scholar 

  7. T. Sugiyama, M. Tahashi, K. Sassa, S. Asai, JSIJ International, 43, 855 (2003).

    Google Scholar 

  8. A. Katsuki, I. Uechi, Y. Tanimoto, Bull. Chem. Soc. Jpn., submitted.

    Google Scholar 

  9. Y. Ito, Kagaku To Kyoiku (Chemistry and Education), 38, 86 (1990).

    Google Scholar 

  10. M. Fujiwara, D. Kodoi, W. Duan, Y. Tanimoto, J. Phys. Chem. B, 105, 3343 (2001).

    Article  Google Scholar 

  11. T. Ohara, S. Mori, Y. Oda, Y. Wada, O. Tsukamoto, Denkigakkai Ronbunshi, 116B, 979 (1995).

    Google Scholar 

  12. M. Iwasaka, S. Ueno, J. Appl. Phys., 75, 7177 (1994).

    Article  ADS  Google Scholar 

  13. E. Beaugnon, R. Tournier, Nature, 349, 470 (1991).

    Article  ADS  Google Scholar 

  14. R. Aogaki, K. Fukui, T. Mukaibo, Denki Kagaku, 43, 504 (1975).

    Google Scholar 

  15. I. Uechi, M. Fujiwara, Y. Fujiwara, Y. Yamamoto, Y. Tanimoto, Bull. Chem. Soc. Jpn., 75, 2378 (2002).

    Article  Google Scholar 

  16. R. Aogaki, Proceedings of Symposium on New Magneto-Science’ 00, p.27, NRIM, Japan Science & Technology, Omiya (1999).

    Google Scholar 

  17. I. Uechi, A. Katsuki, L. Dunin-Barkovskiy, Y. Tanimoto, J. Phys. Chem. B, 108, 2527 (2004).

    Article  Google Scholar 

References

  1. P.W. Selwood, Magnetochemistry 2nd. Ed., Interscience Publisher, New York (1956).

    Google Scholar 

  2. a) S. Nagakura, H. Hayashi, T. Azumi (eds.), Dynamic Spin Chemistry, Kodansha, Tokyo/Wiley-VCH, Weinheim (1998), b) H. Hayashi, Introduction to Dynamic Spin Chemistry, World Scientific, Singapore (2004).

    Google Scholar 

  3. a) H. Hayashi, K. Itoh, S. Nagakura, Bull. Chem. Soc. Jpn., 39, 199 (1966), b) K. Itoh, H. Hayashi, S. Nagakura, Mol. Phys., 17, 561 (1969).

    Article  Google Scholar 

  4. G. L. Closs, J. Am. Chem. Soc., 91, 4552 (1969).

    Article  Google Scholar 

  5. a) R. Kaptein, I. J. Oosterhoff, Chem. Phys. Lett., 4, 195 (1969), 214, b) R. A. Kaptein, J. Am. Chem. Soc., 94, 6251 (1972).

    Article  ADS  Google Scholar 

  6. A. R. Lepley, G. L. Closs (eds.), Chemically Induced Magnetic Polarization, Wiley, New York (1973)

    Google Scholar 

  7. a) K. M. Salikhov, Yu. N. Molin, R. Z. Sagdeev, A. L. Buchachenko, Spin Polarization and Magnetic Effects in Radical Reactions, Elsevier, Amsterdam; Akademiai Kiado, Budpest (1984), b) K. M. Salikhov, Magnetic Isotope Effect in Radical Reactions, Springer, Heidelberg (1996).

    Google Scholar 

  8. a) U. Steiner, T. Ulrich, Chem. Rev., 89, 51 (1989), b) K. A. MacLauchlan, Advanced EPR (A. J. Hoff ed.), Elsevier, Amsterdam(1989), Chapt. 10, c) K. A. MacLauchlan, U. E. Steiner, Mol. Phys., 73, 241 (1991).

    Article  Google Scholar 

  9. a) A. Matsuzaki, S. Nagakura, Chem. Lett., 679 (1974), b) ibid. Bull. Chem. Soc. Jpn., 49, 359 (1976).

    Google Scholar 

  10. R.W. Fessenden, R. H. Schuler, J. Chem. Phys., 39, 2147 (1963).

    Article  ADS  Google Scholar 

  11. H. R. Ward, R. G. Lawler, J. Am. Chem. Soc., 89, 5518 (1967).

    Article  Google Scholar 

  12. J. Bargon, H. Fischer, U. Johnsen, Z. Naturforsch., 22, 1551 (1967).

    ADS  Google Scholar 

  13. B. Brocklehurst, Nature, 221, 921 (1969).

    Article  ADS  Google Scholar 

  14. B. Brocklehurst, R. S. Dixon, E. M. Gordy, V. J. Lopata, M. J. Quinn, A. Singh, F. P. Sargent, Chem. Phys. Lett., 28, 361 (1974).

    Article  ADS  Google Scholar 

  15. a) R. Z. Sagdeev, K. M. Salikhov, T. V. Leshina, M. A. Kamkha, S. M. Shein, Yu. N. Molin, Pis’ma Zh. Eksp. Teor. Fiz., 16, 599 (1972), b) R. Z. Sagdeev, Yu. N. Molin, K. M. Salikhov, T. V. Leshina, M. A. Kamkha, S. M. Shein, Org. Mag. Resonance, 5, 603 (1973).

    ADS  Google Scholar 

  16. M. Wakasa, H. Hayashi, Mol. Phys., 100, 1099 (2002), and references cited therein.

    Article  ADS  Google Scholar 

  17. K. Schulten, H. Staerk, A. Weller, H.-J. Werner, B. Nickel, Z. Phys. Chem., N.F., 101, 371 (1976).

    Google Scholar 

  18. Y. Tanimoto, H. Hayashi, S. Nagakura, H. Sakuragi, K. Tokumaru, Chem. Phys. Lett., 41, 267 (1976).

    Article  ADS  Google Scholar 

  19. A. L. Buchachenko, E. M. Galimov, V. V. Ershov, G. A. Nikiforov, A. D. Pershin, Dokl. Akad. Nauk SSSR, 228, 379 (1976).

    Google Scholar 

  20. R. Z. Sagdeev, T. V. Leshina, M. A. Kamkha, O. I. Belchenko, Yu. N. Molin, A. I. Rezvukhin, Chem. Phys. Lett., 48, 89 (1977) and references cited therein.

    Article  ADS  Google Scholar 

References

  1. D. B. Montgomery, Solenoid Magnet Design, Robert E. Krieger Publishing, Chapt. VIII, Malabar (1980).

    Google Scholar 

  2. T. Watanabe, Fusion Research, 63, 482 (1990).

    Google Scholar 

  3. K. Halbach, Nucl. Instr. Meth., 169, 1 (1980).

    Article  Google Scholar 

  4. M. Kumada, E. I. Antokhin, Y. Iwashita, M. Aoki, E. Sugiyama, IEEE Trans. Appl. Superconduct., 14, 1287 (2004).

    Article  Google Scholar 

  5. M. Tomita, M. Murakami, Nature, 421, 517 (2003).

    Article  ADS  Google Scholar 

  6. T. Kiyoshi, S. Matsumoto, A. Sato, M. Yoshikawa, S. Ito, O. Ozaki, T. Miyazaki, T. Miki, T. Hase, M. Hamada, T. Noguchi, S. Fukui, H. Wada, IEEE Trans. Appl. Superconduct., 15, 1330 (2005).

    Article  Google Scholar 

  7. T. Kiyoshi, M. Kosuge, M. Yuyama, H. Nagai, H. Wada, H. Kitaguchi, M. Okada, K. Tanaka, T. Wakuda, K. Ohata, J. Sato. IEEE Trans. Appl. Superconduct., 10, 472 (2000).

    Article  Google Scholar 

  8. T. Kurusu, M. Ono, S. Hanai, M. Kyoto, H. Takigami, H. Takano, K. Watanabe, S. Awaji, K. Koyama, G. Nishijima, K. Togano, IEEE Trans. Appl. Superconduct., 14, 393 (2004).

    Article  Google Scholar 

  9. M. D. Bird, S. Bole, Y. M. Eyssa, B.-J. Gao, H.-J. Schneider-Muntau, IEEE Trans. Magn., 32, 2542 (1996).

    Article  ADS  Google Scholar 

  10. J. R. Miller, IEEE Trans. Appl. Superconduct., 13, 1385 (2003).

    Article  Google Scholar 

  11. K. Kindo, Physica B, 294–295, 585 (2001).

    Article  ADS  Google Scholar 

  12. J. Schillig, H. Boenig, M. Gordon, C. Mielke, D. Rickel, J. Sims, IEEE Trans. Appl. Superconduct., 10, 526 (2000).

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Kodansha Ltd. and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Fundamentals of Magnetic Field Effects. In: Yamaguchi, M., Tanimoto, Y. (eds) Magneto-Science. Springer Series in Materials Science, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37062-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37062-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37061-1

  • Online ISBN: 978-3-540-37062-8

Publish with us

Policies and ethics