Skip to main content

Defining the Enhancement of Air-Water Interfacial Oxygen Exchange Rate due to Wind-Forced Microscale Waves

  • Chapter
Transport at the Air-Sea Interface

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Over the last few years, compelling evidence has emerged that the exchange of low-solubility gases across air-water interfaces is strongly enhanced by microscale breaking (e.g. Jähne and Haußecker [12], Zappa et al. [28]). Jähne and Haußecker [12] observe that low-solubility gas flux rates are enhanced by up to a factor of 5 in the presence of small scale waves. Investigations using surface infrared imagery [10, 22, 27, 28] have demonstrated a strong correlation between total flux and a proportional area of surface with a high infra-red radiation emission associated with the passage of microscale breaking waves. The mechanisms causing this significant enhancement in exchange rate remain unclear. Zappa et al. [28] proposed that thinning of the aqueous diffusion sublayer by subsurface turbulence in the vicinity of the high infra-red emission region was primarily responsible for this enhancement. Alternate to this is a relationship between the air-water surface exchange rate and the passage rate of wind-forced microscale breaking waves proposed by Peirson and Banner [21]. They have suggested that subduction of the aqueous diffusion sublayer by the microscale wave spilling regions coupled with a weak surface divergence on the upwind faces of the waves primarily determines the microscale-breaking associated flux rate. We have completed a sequence of precise oxygen re-aeration measurements with the specific objective of testing the findings of Peirson and Banner [21]. Specifically, we have compared the flux rates of wind-forced, flat water surfaces in the absence of waves with those in the presence of wind-forced, steep, unbroken waves and wind-forced, microscale breaking waves. With the introduction of steep, unbroken micro-scale waves the surface exchange rate is enhanced by a factor of approximately 2.5. The transition from incipient breaking of the waves to the microscale breaking state induces a significant increase in the associated wind stress [1]. The observed rapid increase in flux rate is approximately proportional to the increase in the wind stress. For the microscale-breaking state, the observed flux rates show good agreement with the predictions of Peirson and Banner [21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. L. Banner. The influence of wave breaking on the surface pressure distribution in wind-wave interactions. J.Fluid Mech., 211:463–495, 1990.

    Article  Google Scholar 

  2. M. L. Banner and W. L. Peirson. Tangential stress beneath wind-driven air-water interfaces. J.Fluid Mech., 364:115–145, 1998.

    Article  Google Scholar 

  3. M. L. Banner and O. M. Phillips. On the incipient breaking of smallscale waves. J.Fluid Mech., 65:647–656, 1974.

    Article  Google Scholar 

  4. T. B. Benjamin and J. E. Feir. The disintegration of wave trains on deep water. J.Fluid Mech., 27:417–430, 1967.

    Article  Google Scholar 

  5. M. Brocchini and D. H. Peregine. The dynamics of strong turbulence at free surfaces. part 1. description. J.Fluid Mech., 449:225–254, 2001.

    Article  CAS  Google Scholar 

  6. H. C. Broecker, W. Siems, and J. Petermann. The influence of wind on co2-exchange in an wind-wave tunnel, including effect of monolayers. Journal of Marine Research, 36:595–610, 1978.

    CAS  Google Scholar 

  7. G. T. Csanady. The role of breaking wavelets in air-sea gas transfer. Journal of Geophysical Research, 95(C1):749–759, 1990.

    Article  Google Scholar 

  8. E. L. Deacon. Gas transfer to and across an air-water interface. Tellus, 29:363–374, 1977.

    CAS  Google Scholar 

  9. E. L. Deacon. Sea-air gas transfer: The wind speed dependence. Boundary-Layer Meteorology, 21:31–37, 1981.

    Article  Google Scholar 

  10. A. T. Jessup, C. J. Zappa, and H. H. Yeh. Defining and quantifying microscale wave breaking with infrared imagery. Journal of Geophysical Research, 102(C10):23145–23153, 1997.

    Article  Google Scholar 

  11. B. Jähne. Parametrisierung des Gasaustausches mit Hilfe von Laborexperimenten. PhD thesis, Institut für Umweltphysik, University of Heidelberg, 1980.

    Google Scholar 

  12. B. Jähne and H. Haußecker. Air-water gas exchange. Annual Reviews Fluid Mechanics, 30:443–468, 1998.

    Article  Google Scholar 

  13. B. Jähne, K. O. Münnich, and U. Siegenthaler. Measurements of gas exchange and momentum transfer in a circular wind-water tunnel. Tellus, 31:321–329, 1979.

    Article  Google Scholar 

  14. B. Jähne, K. O. Münnich, R. Bösinger, A. Dutzi, W. Huber, and P. Libner. On the parameters influencing air-water gas exchange. Journal of Geophysical Research, 92(C2):1937–1949, 1987.

    Article  Google Scholar 

  15. S. Komori, R. Nagaosa, and Y. Murakami. Mass transfer across a sheared air-water interface. J.Fluid Mech., 249:161–183, 1993.

    Article  CAS  Google Scholar 

  16. M. S. Longuet-Higgins. Capillary rollers and bores. J.Fluid Mech., 240: 659–679, 1992.

    Article  Google Scholar 

  17. M. S. Longuet-Higgins. Parasitic capillary waves: a direct calculation. J.Fluid Mech., 301:79–107, 1995.

    Article  Google Scholar 

  18. S. P. McKenna and W. R. McGillis. The role of free-surface turbulence and surfactants in air-water gas transfer. Int.J.Heat Mass Transfer, 47(3):539–553, 2004.

    Article  CAS  Google Scholar 

  19. E. C. Monahan. The physical and practical implications of a co2 gas transfer coefficient that varies as the cube of the wind speed. Geophysical Monograph 127, American Geophysical Union, pages 193–197, 2002.

    Google Scholar 

  20. W. L. Peirson. Measurement of surface velocities and shears at a wavy air-water interface using particle image velocimetry. Expt.in Fluids, 23:427–437, 1997.

    Article  CAS  Google Scholar 

  21. W. L. Peirson and M. L. Banner. Aqueous surface flows induced by microscale breaking wind waves. J.Fluid Mech., 479:1–38, 2003.

    Article  Google Scholar 

  22. M. H. K. Siddiqui, M. R. Loewen, C. Richardson, W. E. Asher, and A. T. Jessup. Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves. Phys.Fluids, 13:1891–1903, 2001.

    Article  CAS  Google Scholar 

  23. A. J. Szeri. Capillary waves and air-sea transfer. J.Fluid Mech., 332: 341–358, 1997.

    CAS  Google Scholar 

  24. R. H. Wanninkhof and L. F. Bliven. Relationship between gas exchange, wind speed and radar backscatter in a large wind wave tank. J.Geophys.Res., 96(C2):2785–2796, 1991.

    Article  Google Scholar 

  25. P. T. Woodrow and S. R. Duke. Laser-induced fluorescence studies of oxygen transfer across unsheared flat and wavy air-water interfaces. Eng.Chem.Res., 40(8):1985–1995, 2001.

    Article  CAS  Google Scholar 

  26. P. T. Jr. Woodrow and S. R. Duke. Lif measurements of oxygen concentration gradients along flat and wavy air-water interfaces. Geophysical Monograph 127, American Geophysical Union, pages 83–88, 2002.

    Google Scholar 

  27. C. J. Zappa, A. T. Jessup, and W. E. Asher. Microscale wave breaking and air-water gas transfer. J.Geophys.Res., 106(C5):9385–9391, May15 2001.

    Article  Google Scholar 

  28. C. J. Zappa, W. E. Asher, A. T. Jessup, J. Klinke, and S. R. Long. Effect of microscale wave breaking on air-water gas transfer. Geophysical Monograph 127, American Geophysical Union, pages 23–29, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Peirson, W.L., Walker, J.W., Welch, C., Banner, M.L. (2007). Defining the Enhancement of Air-Water Interfacial Oxygen Exchange Rate due to Wind-Forced Microscale Waves. In: Garbe, C.S., Handler, R.A., Jähne, B. (eds) Transport at the Air-Sea Interface. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36906-6_8

Download citation

Publish with us

Policies and ethics