Skip to main content

A Multiscale Molecular Dynamics Approach to Contact Mechanics and Friction: From Continuum Mechanics to Molecular Dynamics

  • Chapter
Fundamentals of Friction and Wear

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.N.J. Persson, Sliding Friction: Physical Principles and Applications, 2nd ed., Springer, Heidelberg, 2000

    MATH  Google Scholar 

  2. J. Krim, I. Heyvaert, C. Van Haesendonck and Y. Bruynseraede, Phys. Rev. Lett. 70, 57 (1993)

    Article  PubMed  ADS  CAS  Google Scholar 

  3. R. Buzio, C. Boragno, F. Biscarini, F.B. de Mongeot and U. Valbusa, Nature Materials 2, 233 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  4. B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin and E. Tosatti, J. Phys. Condens. Matter 17, R1 (2005)

    Article  ADS  CAS  Google Scholar 

  5. B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)

    Article  ADS  CAS  Google Scholar 

  6. B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002)

    PubMed  CAS  Google Scholar 

  7. C. Yang, U. Tartaglino and B.N.J. Persson, Eur. Phys. J. E., 19, 47 (2006)

    Article  PubMed  CAS  Google Scholar 

  8. S. Curtarolo and G. Ceder, Phys. Rev. Lett. 88, 255504 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  9. X.B. Nie, S.Y. Chen, W.N. E and M.O. Robbins, J. Fluid Mech. 500, 55 (2004)

    Article  MATH  ADS  CAS  Google Scholar 

  10. W. E and Z. Huang, Phys. Rev. Lett. 87, 135501 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  11. W.A. Curtin and R.E. Miller Modelling Simul. Mater. Sci. Eng. 11, R33 (2003)

    Article  ADS  CAS  Google Scholar 

  12. W. Cai, M. de Koning, V.V. Bulatov and S. Yip, Phys. Rev. Lett. 85, 3213 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  13. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    MATH  Google Scholar 

  14. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992)

    Google Scholar 

  15. B. Luan and M.O. Robbins, Nature 435, 929 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  16. B.N.J. Persson, F. Bucher, B. Chiaia Phys. Rev. B 65, 184106 (2002)

    Article  ADS  CAS  Google Scholar 

  17. M. Borri-Brunetto, B. Chiaia, M. Ciavarella, Comput. Methods Appl. Mech. Eng. 190, 6053 (2001)

    Article  MATH  Google Scholar 

  18. S. Hyun, L. Pei, J.F. Molinari, M.O. Robbins, Phys. Rev. E 70, 026117 (2004)

    Article  ADS  CAS  Google Scholar 

  19. K.L. Johnson, K. Kendall and A.D. Roberts, Proc. R. Soc. A 324, 301 (1971)

    Article  ADS  CAS  Google Scholar 

  20. K. Kendall, Molecular Adhesion and its Applications (New York, Kluwer, 2001)

    Google Scholar 

  21. K.N.G. Fuller and D. Tabor, Proc. R. Soc. A 345, 327 (1975).

    Article  ADS  Google Scholar 

  22. J.A. Greenwood and J.B.P. Williamson, Proc. Roy. Soc. London, Ser. A 295, 300 (1966). See also, J.F. Archard, Proc. Roy. Soc. London, Ser. A 243, 190 (1957)

    Article  ADS  CAS  Google Scholar 

  23. A.W. Bush, R.D. Gibson and T.R. Thomas, Wear 35, 87 (1975); A.W. Bush, R.D. Gibson and G.P. Keogh, Mech. Res. Commun. 3, 169 (1976)

    Article  Google Scholar 

  24. B.N.J. Persson, O. Albohr, F. Mancosu, V. Peveri, V.N. Samoilov and I.M. Sivebaek, Wear 254, 835 (2003)

    Article  CAS  Google Scholar 

  25. B.N.J. Persson, Phys. Rev. B 51, 13568 (1995)

    Article  ADS  CAS  Google Scholar 

  26. C. Caroli and P. Nozieres, Eur. Phys. J. B 4, 233 (1998). T. Baumberger and C. Caroli, cond-mat/0506657 v1 (24 Jun. 2005)

    Article  ADS  CAS  Google Scholar 

  27. C.Y. Yang and Y.P. Zhao, J. Chem. Phy. 120, 5366 (2004)

    Article  ADS  CAS  Google Scholar 

  28. J. Aubry, J. Phys. (Paris) 44, 147 (1983)

    CAS  MathSciNet  Google Scholar 

  29. K. Shinjo and M. Hirano, Surf. Sci. 283, 473 (1993)

    Article  CAS  Google Scholar 

  30. E. Riedo and H. Brune, Applied Physics Letters 83, 1986 (2003)

    Article  ADS  CAS  Google Scholar 

  31. R.J.A. van der Oetelaar and C.F.J. Flipse, Surf. Sci. 384, L828 (1997)

    Article  Google Scholar 

  32. B.N.J. Persson and E. Tosatti, Solid State Communications 109, 739 (1999)

    Article  CAS  Google Scholar 

  33. C. Caroli and P. Nozieres, in Physics of Sliding Friction, ed. by B.N.J. Persson and E. Tosatti, Kluwer, Dordrecht (1996)

    Google Scholar 

  34. M.H. Müser, Europhys. Lett 66, 97 (2004)

    Article  ADS  CAS  Google Scholar 

  35. T. Baumberger and C. Caroli, arXiv:cond-mat/0506657 v1.

    Google Scholar 

  36. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer and H.-J. Güntherodt, Phys. Rev. Lett. 84, 1172 (2000); E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer and H. Brune, Phys. Rev. Lett. 91, 084502 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  37. B.N.J. Persson, Phys. Rev. B 51, 13568 (1995)

    Article  ADS  CAS  Google Scholar 

  38. Y. Sang, M. Dube and M. Grant, Phys. Rev. Lett. 87, 174301 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  39. G. He, M.H. Müser and M.O. Robbins, Science 284, 1650 (1999)

    Article  PubMed  ADS  CAS  Google Scholar 

  40. M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg and H.W. Zandbergen, Phys. Rev. Lett. 92, 126101 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  41. Y. Liu, A. Erdemir and E.I. Meletis, Surf. Coat. Technol. 86–87, 564 (1996)

    Article  Google Scholar 

  42. The properties of diamond like carbon (DLC) films depends strongly on the preparation method and operation conditions. Thus, only DLC films produced from discharge plasmas containing much hydrogen will exhibit a low friction (μ ∼ 0.001–0.003). This is believed to result from the passivation of carbon dangling bonds by the hydrogen atoms. Without hydrogen, in an inert atmosphere the friction is huge (of order 1) because of a high concentration of very reactive carbon dangling bonds. In the normal atmosphere, most dangling bonds are passivated and the friction lower but still much higher than for diamond or for DLC films produced from plasmas containing much hydrogen. See, A. Erdemir, Surface and Coatings Technology 146–147, 292 (2001)

    Article  Google Scholar 

  43. L. Bureau, T. Baumberger and C. Caroli, arXiv:cond-mat/0510232 v1

    Google Scholar 

  44. B.N.J. Persson, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tartaglino, U., Yang, C., Persson, B.N.J. (2007). A Multiscale Molecular Dynamics Approach to Contact Mechanics and Friction: From Continuum Mechanics to Molecular Dynamics. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36807-6_15

Download citation

Publish with us

Policies and ethics