Skip to main content

Random Lattice Schrödinger Operators with Decaying Potential: Some Higher Dimensional Phenomena

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1807))

Abstract

We consider lattice Schrödinger operators on \(\mathbb Z^d\) of the form \(H_\omega = \Delta + V_\omega\) where \(\Delta\) denotes the usual lattice Laplacian on \(\mathbb Z^d\) and \(V_\omega\) is a random potential \(V_\omega(n) = \omega_nv_n\). Here \(\{\omega_n\vert n\in\mathbb Z^d\}\) are independent Bernoulli or normalized Gaussian variables and \((v_n)_{n\in\mathbb Z^d}\) is a sequence of weights satisfying a certain decay condition. In what follows, we will focus on some results related to absolutely continuous (ac)-spectra and proper extended states that, roughly speaking, distinguish d > 1 from d = 1 (but are unfortunately also far from satisfactory in this respect). There will be two parts. The first part is a continuation of [Bo], thus d = 2. We show that the results on ac spectrum and wave operators from [Bo], where we assumed \(\vert v_n\vert < C\vert n\vert^{-\alpha}, \alpha > \frac 12\), remain valid if \((v_n\vert n\vert^\varepsilon)\) belongs to \(\ell^3(\mathbb Z^2)\), for some \(\varepsilon > 0\). This fact is well-known to be false if d = 1.

The second part of the paper is closely related to [S]. We prove for \(d\geq 5\) and letting \(V_\omega(n) = \kappa \omega_n\vert n\vert^{-\alpha}(\alpha > \frac 13)\) existence of (proper) extended states for \(H_\omega = \Delta + \tilde V_\omega\), where \(\tilde V_\omega\) is a suitable renormalization of \(V_\omega\) (involving only deterministic diagonal operators with decay at least \(\vert n\vert^{-2\alpha}\)). Since in 1D for \(\alpha < \frac 12\), \(\omega\) a.s. all extended states are in \(\ell^2(\mathbb Z)\), this is again a higher dimensional phenomenon. It is likely that the method may be made to work for all \(\alpha > 0\). But even so, this is again far from the complete picture since it is conjectured that \(H_\omega = \Delta + \omega_n\delta_{nn'}\) has a component of ac spectrum if \(d\geq 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bourgain .

Editor information

Vitali D. Milman Gideon Schechtman

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Bourgain, J. (2003). Random Lattice Schrödinger Operators with Decaying Potential: Some Higher Dimensional Phenomena. In: Milman, V.D., Schechtman, G. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 1807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36428-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36428-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00485-1

  • Online ISBN: 978-3-540-36428-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics