Skip to main content

Efficient Implementation of Nonlinear Deconvolution Methods for Implicit Large-Eddy Simulation

  • Conference paper
High Performance Computing in Science and Engineering ’06

Abstract

The adaptive local deconvolution method (ALDM) provides a systematic framework for the implicit large-eddy simulation (ILES) of turbulent flows. Exploiting numerical truncation errors, the subgrid scale model of ALDM is implicitly contained within the discretization. An explicit computation of model terms therefore becomes unnecessary. Subject of the present paper is the efficient implementation and the application to large-scale computations of this method. We propose a modification of the numerical algorithm that allows for reducing the amount of computational operations without affecting the quality of the LES results. Computational results for isotropic turbulence and plane channel flow show that the proposed simplified adaptive local deconvolution (SALD) method performs similarly to the original ALDM and at least as well as established explicit models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.A. Adams, S. Hickel, and S. Franz. Implicit subgrid-scale modeling by adaptive deconvolution. J. Comp. Phys., 200:412–431, 2004.

    Article  MATH  Google Scholar 

  2. J.-P. Chollet. Two-point closures as a subgrid-scale modeling tool for large-eddy simulations. In F. Durst and B.E. Launder, editors, Turbulent Shear Flows IV, pages 62–72, Heidelberg, 1984. Springer.

    Google Scholar 

  3. G. Comte-Bellot and S. Corrsin. Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated ‘isotropic’ turbulence. J. Fluid Mech., 48:273–337, 1971.

    Article  Google Scholar 

  4. E. Garnier, M. Mossi, P. Sagaut, P. Comte, and M. Deville. On the use of shock-capturing schemes for large-eddy simulation. J. Comput. Phys., 153:273–311, 1999.

    Article  MATH  Google Scholar 

  5. S. Ghosal. An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys., 125:187–206, 1996.

    Article  MATH  Google Scholar 

  6. F.F. Grinstein and C. Fureby. From canonical to complex flows: Recent progress on monotonically integrated LES. Comp. Sci. Eng., 6:36–49, 2004.

    Article  Google Scholar 

  7. A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comp. Phys., 71:231–303, 1987.

    Article  MATH  Google Scholar 

  8. S. Hickel, N.A. Adams, and J. A. Domaradzki. An adaptive local deconvolution method for implicit LES. J. Comput. Phys., 213:413–436, 2006.

    Article  MATH  Google Scholar 

  9. S. Hickel, S. Franz, N.A. Adams, and P. Koumoutsakos. Optimization of an implicit subgrid-scale model for LES. In Proceedings of the 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 2004.

    Google Scholar 

  10. S. Hickel, T. Kempe, and N.A. Adams. On implicit subgrid-scale modeling in wall-bounded flows. In Proceedings of the EUROMECH Colloquium 469, pages 36–37, Dresden, Germany, 2005.

    Google Scholar 

  11. S. Hickel, T. Kempe, and N.A. Adams. Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions. Theoret. Comput. Fluid Dynamics, 2006. (submitted).

    Google Scholar 

  12. G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126:202–228, 1996.

    Article  MATH  Google Scholar 

  13. A. Leonard. Energy cascade in large eddy simulations of turbulent fluid flows. Adv. Geophys., 18A:237–248, 1974.

    Google Scholar 

  14. M. Lesieur. Turbulence in Fluids. Kluwer Academic Publishers, Dordrecht, The Netherlands, 3 edition, 1997.

    MATH  Google Scholar 

  15. R.J. LeVeque. Numerical methods for conservation laws. Birkhäuser, Basel, Switzerland, 1992.

    MATH  Google Scholar 

  16. S.W. Liu, C. Meneveau, and J. Katz. On the properties of similarity subgridscale models as deduced from measurements in a turbulent jet. J. Fluid Mech., 275:83–119, 1994.

    Article  Google Scholar 

  17. R.D. Moser, J. Kim, and N.N. Mansour. Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys. Fluids, 11:943–945, 1999.

    Article  Google Scholar 

  18. U. Schumann. Subgrid scale model for finite-difference simulations of turbulence in plane channels and annuli. J. Comput. Phys., 18:376–404, 1975.

    Article  MATH  Google Scholar 

  19. C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Technical Report 97-65, ICASE, NASA Langley Research Center, Hampton, Virginia, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hickel, S., Adams, N.A. (2007). Efficient Implementation of Nonlinear Deconvolution Methods for Implicit Large-Eddy Simulation. In: Nagel, W.E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’06. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36183-1_21

Download citation

Publish with us

Policies and ethics