Skip to main content

Gravitational Wave Signals from Simulations of Black Hole Dynamics

  • Conference paper
High Performance Computing in Science and Engineering ’06

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker. Ligo: The laser interferometer gravitational-wave observatory. Science, 256:325–333, 1992.

    Article  Google Scholar 

  2. Miguel Alcubierre. The appearance of coordinate shocks in hyperbolic formulations of general relativity. Phys. Rev. D, 55:5981–5991, 1997.

    Article  MathSciNet  Google Scholar 

  3. Miguel Alcubierre, Bernd Brügmann, Peter Diener, Michael Koppitz, Denis Pollney, Edward Seidel, and Ryoji Takahashi. Gauge conditions for long-term numerical black hole evolutions without excision. Phys. Rev. D, 67:084023, 2003.

    Article  MathSciNet  Google Scholar 

  4. G. Allen, T. Goodale, J. Massó, and E. Seidel. The cactus computational toolkit and using distributed computing to collide neutron stars. In Proceedings of Eighth IEEE International Symposium on High Performance Distributed Computing, HPDC-8, Redondo Beach, 1999. IEEE Press, 1999.

    Google Scholar 

  5. Richard Arnowitt, Stanley Deser, and Charles W. Misner. The dynamics of general relativity. In L. Witten, editor, Gravitation: An introduction to current research, pages 227–265. John Wiley, New York, 1962.

    Google Scholar 

  6. John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz, and James van Meter. Binary black hole merger dynamics and waveforms. Phys. Rev. D, 73:104002, 2006.

    Article  Google Scholar 

  7. John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz, and James van Meter. Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett., 96:111102, 2006.

    Article  Google Scholar 

  8. Thomas W. Baumgarte and Stuart L. Shapiro. On the numerical integration of Einstein’s field equations. Phys. Rev. D, 59:024007, 1999.

    Article  MathSciNet  Google Scholar 

  9. Bernd Brügmann, Wolfgang Tichy, and Nina Jansen. Numerical simulation of orbiting black holes. Phys. Rev. Lett., 92:211101, 2004.

    Article  Google Scholar 

  10. Gioel Calabrese, Ian Hinder, and Sascha Husa. Numerical stability for finite difference approximations of Einstein’s equations. J. Comp. Phys, 2005. in press.

    Google Scholar 

  11. Manuela Campanelli, C. O. Lousto, and Y. Zlochower. The last orbit of binary black holes. Phys. Rev. D, 73:061501(R), 2006.

    Article  MathSciNet  Google Scholar 

  12. Manuela Campanelli, Carlos O. Lousto, Pedro Marronetti, and Yosef Zlochower. Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Letter, 96:111101, 2006.

    Article  Google Scholar 

  13. Dae-Il Choi. Recent results on binary black hole simulations. Talk given at Penn State Sources and Simulations Seminar Seroes, April 11 2006, 2006.

    Google Scholar 

  14. Dae-Il Choi, J. David Brown, Breno Imbiriba, Joan Centrella, and Peter MacNeice. Interface conditions for wave propagation through mesh refinement boundaries. J. Comput. Phys., 193:398–425, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  15. Gregory B. Cook. Initial data for numerical relativity. Living Rev. Rel., 3:5, 2000.

    Google Scholar 

  16. K. Danzmann. The geo project: a long baseline laser interferometer for the detection of gravitational waves. Lecture Notes in Physics, 410:184–209, 1992.

    Article  Google Scholar 

  17. GEO600 — http://www.geo600.uni-hannover.de/.

    Google Scholar 

  18. Carsten Gundlach and Jose M. Martin-Garcia. Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations. Phys. Rev. D, 70:044032, 2004.

    Article  MathSciNet  Google Scholar 

  19. Carsten Gundlach and Jose M. Martin-Garcia. Hyperbolicity of second-order in space systems of evolution equations. 2005.

    Google Scholar 

  20. Carsten Gundlach and Jose M. Martin-Garcia. Well-posedness of formulations of the einstein equations with dynamical lapse and shift conditions. 2006.

    Google Scholar 

  21. Mark Hannam, Sascha Husa, Denis Pollney, Bernd Bruegmann, and Niall O’Murchadha. Geometry and regularity of moving punctures. 2006.

    Google Scholar 

  22. Frank Herrmann, Deirdre Shoemaker, and Pablo Laguna. Unequal-mass binary black hole inspirals. 2006.

    Google Scholar 

  23. Breno Imbiriba, John Baker, Dae-Il Choi, Joan Centrella, David R. Fiske, J. David Brown, James R. van Meter, and Kevin Olson. Evolving a puncture black hole with fixed mesh refinement. Phys. Rev. D, 70:124025, 2004.

    Article  Google Scholar 

  24. Heinz-Otto Kreiss and Joseph Oliger. Methods for the approximate solution of time dependent problems. Global atmospheric research programme publications series, 10, 1973.

    Google Scholar 

  25. LIGO — http://www.ligo.caltech.edu/.

    Google Scholar 

  26. Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda de Fainchtein, and Charles Packer. Paramesh: A parallel adaptive mesh refinement community toolkit. Computer Physics Communications, 126(3):330–354, 11 April 2000.

    Article  MATH  Google Scholar 

  27. Masaru Shibata and Takashi Nakamura. Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D, 52:5428, 1995.

    Article  MathSciNet  Google Scholar 

  28. Cactus Computational Toolkit. http://www.cactuscode.org.

    Google Scholar 

  29. VIRGO — http://www.virgo.infn.it/.

    Google Scholar 

  30. The xgraph and ygraph Home Pages http://jean-luc.aei-potsdam.mpg.de/Codes/xgraph, http://www.aei.mpg.de/~pollney/ygraph.

    Google Scholar 

  31. Y. Zlochower, J. G. Baker, M. Campanelli, and C. O. Lousto. Accurate black hole evolutions by fourth-order numerical relativity. Phys. Rev. D, 72:024021, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brügmann, B. et al. (2007). Gravitational Wave Signals from Simulations of Black Hole Dynamics. In: Nagel, W.E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’06. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36183-1_1

Download citation

Publish with us

Policies and ethics