Skip to main content

Dynamics of Poured Polyhedra of Different Shape

  • Chapter
Multifield Problems in Solid and Fluid Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 28))

Summary

In this work different models for the simulation of granular material are investigated. Due to the fact that a detailed simulation considering complex shapes of the bodies is very time consuming, methods from molecular dynamics (MD) are used. By means of granular matter simulations large systems like bulk solids, silicic or sand e.g. in silos, or other systems like carriage systems can be investigated. The MD method is combined here with ideas from multibody systems, so that it is possible to determine the collisions and the motion of differently shaped bodies. Here, particles are modeled as rigid bodies, where the interaction is described by means of elastic contact forces. The particles considered are convex or non-convex three-dimensional polyhedra.

After neighboring body pairs are found, the very time consuming collision detection for polygonal bodies can be accomplished. In order to check whether there is a collision between two neighboring body pairs, it has to be checked, whether there is a vertex of one body inside the other body. It will be focused also on the calculation of the contact forces in normal and tangential direction.

Research Project B7 “Hybrid Multibody Simulations of Poured Particles”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. P. Allen and D. J. Tildesley. Computer Simulations of Liquids. Clarendon Press, Oxford, 1989.

    Google Scholar 

  2. D. Baraff. Dynamic Simulation of Non-Penetrating Rigid Bodies. Cornell University Ithaka, Ph.D. Thesis 92–1275, 1992.

    Google Scholar 

  3. L. Brendel and S. Dippel. Lasting contacts in molecular dynamics simulations. In Physics of Dry Granular Materials — NATO ASI Series E 350, pages 313–318. Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  4. P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular assemblies. Geotechnique, 29(1):47–65, 1979.

    Article  Google Scholar 

  5. P. Eberhard. Kontaktuntersuchungen durch hybride Mehrkörpersystem / Finite Elemente Simulationen. Shaker, Aachen, 2000.

    Google Scholar 

  6. D. Fincham and B. J. Ralston. Molecular dynamics simulation using CRAY-1 vector processing computer. Computer Physics Communications, 23:127–134, 1981.

    Article  Google Scholar 

  7. Y. Gonthier, J. McPhee, C. Lange, and J.-C. Piefboeuf. A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody System Dynamics, 11(3):209–233, 2004.

    Article  MATH  Google Scholar 

  8. L. Greengard. The Rapid Evaluation of Potential Fields in Particle Simulation. MIT Press, Cambridge, 1987.

    Google Scholar 

  9. K. H. Hunt and F. R. E. Grossley. Coefficient of restitution interpreted as damping in vibroimpact. ASME Journal of Applied Mechanics, 7:440–445, 1975.

    Google Scholar 

  10. Y. Kishino, editor. Powders & Grains, Balkema, Rotterdam, 2001.

    Google Scholar 

  11. H. M. Lankarani and P. E. Nikravesh. Continuous contact force models for impact analysis in multibody systems. Nonlinear Dynamics, 5:193–207, 1994.

    Google Scholar 

  12. S. Luding. Collisions and contacts between two particles. In Physics of Dry Granular Media — NATO ASI Series E 350, pages 285–304. Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  13. S. Luding. Die Physik trockener granularer Medien. Logos, Berlin, 1998.

    Google Scholar 

  14. D. W. Marhefka and D. E. Orin. A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Transaction on Systems, Man and Cybernetics — Part A: Systems and Humans, 29(6):566–572, 1999.

    Article  Google Scholar 

  15. B. Muth, M.-K. Müller, P. Eberhard, and S. Luding. Contacts between many bodies. Machine Dynamics Problems, 28(1):101–114, 2004.

    Google Scholar 

  16. B. Muth, G. Of, P. Eberhard, and O. Steinbach. Collision detection for complicated polyhedra using the multipole method or ray crossing (submitted 2006).

    Google Scholar 

  17. J. T. Oden and E. B. Pires. Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. Journal of Applied Mechanics, 50(1):67–76, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. O’Rourke. Computational Geometry in C, 2. Edition. Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  19. F. Pfeiffer and C. Glocker. Multibody Dynamics with Unilateral Contacts. Wiley, New York, 1996.

    MATH  Google Scholar 

  20. J. Pfister and P. Eberhard. Frictional contact of flexible and rigid bodies. Granular Matter, 4(1):25–36, 2002.

    Article  Google Scholar 

  21. T. Pöschel and V. Buchholtz. Static friction phenomena in granular materials: Coulomb law vs. particle geometry. Physical Review Letters, 71(24):3963–3974, 1993.

    Article  Google Scholar 

  22. T. Pöschel and S. Luding, editors. Granular Gases, Springer, Berlin, 2001.

    MATH  Google Scholar 

  23. B. Quentrec and C. Brot. New method for searching for neighboring molecular dynamics. Journal of Computational Physics, 13:430–432, 1973.

    Article  Google Scholar 

  24. D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  25. V. Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics, 60:187–207, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  26. W. Schiehlen and P. Eberhard. Technische Dynamik. B.G. Teubner, Stuttgart, 2004.

    MATH  Google Scholar 

  27. A. Schinner. Fast algorithms for the simulations of polygonal particles. Granular Matter, 2(1):35–43, 1999.

    Article  Google Scholar 

  28. R. Tykhoniuk, J. Tomas, S. Luding, M. Kappl, L. Heim, and H.-J. Butt. Adhesion, inelastic contact behavior and simulation of shear dynamics of ultrafine cohesive powder. In Powders and Grains 2005, pages 499–503. Balkema, Leiden, 2005.

    Google Scholar 

  29. L. Verlet. Computer experiments on classical fluids. I. Thermodynamical properties of Lennart-Jones molecules. Physical Review, 159(1):98–103, 1967.

    Article  Google Scholar 

  30. P. A. Vermeer, S. Diebels, W. Ehlers, H. J. Herrmann, S. Luding, and E. Ramm, editors. Continuous and Discontinuous Modelling of Cohesive Frictional Materials, Springer, Berlin, 2001.

    MATH  Google Scholar 

  31. O. R. Walton and R. L. Braun. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology, 30(5):949–980, 1986.

    Article  Google Scholar 

  32. W. Wessel. Kontakterkennung räumlicher polyhedraler Körper mit Hilfe von Methoden der Molekulardynamik. University of Stuttgart, Student-Thesis STUD-212, 2004.

    Google Scholar 

  33. P. Wriggers. Computational Contact Mechanics. John Wiley & Sons, Chichester, 2002.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eberhard, P., Muth, B. (2006). Dynamics of Poured Polyhedra of Different Shape. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 28. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34961-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34961-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34959-4

  • Online ISBN: 978-3-540-34961-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics