Skip to main content

Role of Phytochelatins in Phytoremediation of Heavy Metals

  • Chapter
Environmental Bioremediation Technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Google Scholar 

  • Adam V, Zehnalek J, Petrlova J, Potesil D, Sures B, Trnkova L, Jelen F, Vitecek J, Kizek R (2005) Phytochelatin modified electrode surface as a sensitive heavy metal ion biosensor. Sensors 5:70–84

    Google Scholar 

  • Ahner BA, Price NM, Morel FMM (1994) Phytochelatin production by marine phytoplankton at low free metal ion concentrations: Laboratory studies and field data from Massachusetts Bay. Proc Natl Acad Sci USA 91:8433–8436

    Google Scholar 

  • Bae W, Mehra RK (1997) Metal-binding characteristics of phytochelatin analog (Glu-Cys)2Gly. J Inorg Biochem 68:201–210

    Google Scholar 

  • Bae W, Mehra RK (1998) Properties of glutathione-and phytochelatin-capped CdS bionanocrystallites. J Inorg Biochem 69:33–43

    Google Scholar 

  • Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and accumulation of mercury. Appl Environ Microbiol 67:5335–5338

    Google Scholar 

  • Barceló J, Poshenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Google Scholar 

  • Barceló J, Poschenrieder C, Tolrá RP (2003) Importance of phenolics in rhizosphere and roots for plant-metal relationships. In: Gobran G (ed) Extended Abstracts 7thICOBE Upsala 15-19 June, pp 162–163

    Google Scholar 

  • Beck A, Lendzian K, Oven M, Christmann A, Grill E (2003) Phytochelatin synthase catalyses key step in turnover of glutathione conjugates. Phytochemistry 62:423–431

    Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian Mustard plants for phytoremediation of metal contaminated mine tailings. J Environ Qual 32:432–440

    Google Scholar 

  • Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38

    Google Scholar 

  • Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra RK, Mortari A, Csöregi E (2003) Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosensors and Bioelectronics 18:547–553

    Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1995) Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd-stress, Mo-stress, Ni-stress, and Zn-stress. New Phytol 129:403–409

    Google Scholar 

  • Cai Y, Su J, Ma LQ (2004) Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements. Environ Pollut 129:69–78

    Google Scholar 

  • Cazalé A-C, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215–219

    Google Scholar 

  • Chandra Sekhar K, Chary NS, Kamala CT, Anjaneyulu Y (2004) Utilization of plant metal interactions for environmental management: From a general disbelief to universal acceptance. Proc Indian Sci Acad B70:13–30

    Google Scholar 

  • Chen J, Zhou J, Goldsbrough PB (1997). Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165–172

    Google Scholar 

  • Clemens S, Kim EJ, Newmann D, Schroeder J (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Google Scholar 

  • Cobbett CS (1999) A family of phytochelatin synthase genes from plant, fungal and animal species. Trends Plant Sci 4:335–343

    Google Scholar 

  • Cobbett CS (2000). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Plant Physiol 123:825–832

    Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and Metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-defecient, cadmium-sensitive mutant, Cad 2-1, of Arabidopsis thaliana is deficient in ?-glutamylcysteine synthetase. Plant J 16:73–78

    Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–598

    Google Scholar 

  • Dameron CT, Winge DR (1990). Characterization of peptide-coated cadmium-sulfide crystallites. Inorg Chem 29:1343–1348

    Google Scholar 

  • de Knecht JA, Koevoets PLM, Verkleij JAC, Ernst WHO (1992) Evidence against a role for phhytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol 122:681–688

    Google Scholar 

  • de Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Chain length distribution and sulfide incorporation. Plant Physiol 104:255–261

    Google Scholar 

  • de Knecht JA, Van Baren N, ten Bookum WM, Wong Fong, Sang HW, Koevoets PLM, Schat H, Verkleij JAC (1995) Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Sci 106:9–18

    Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Google Scholar 

  • Dhanker OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and ?-glutamylcysteine synthetase expression. Nature Biotechnol 20:1140–1145

    Google Scholar 

  • Dushenkov S, Skarzhinskaya M, Glimelius K, Gleba D, Raskin I (2002) Bioengineering of a phytoremediation plant by means of somatic hybridization. Int J Phytoremediat 4:117–126

    Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediaton of toxic metals. Biotechnol Adv 23:97–114

    Google Scholar 

  • Ebbs S, Lau J, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J&C Prestl.). Planta 214:635–640.

    Google Scholar 

  • Elmsley J (2001) Nature’s building blocks. An A-Z guide to the elements. Oxford University Press, Oxford, UK

    Google Scholar 

  • Freedman JH, Ciriolo MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202

    Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1989) Survey of the Plant Kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44c:361–369

    Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathway of As(III) detoxification in Sachharomyces cerevisiae. Proc Natl Acad Sci USA 96:5001–5006

    Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Bernal P, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Comm 303:440–445

    Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M et al. (1999) Use of plant roots for phytoremeidation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    Google Scholar 

  • Gong J-M, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Google Scholar 

  • Grill E, Gekeler W, Winnacker E-L, Zenk MH (1986a) Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales. FEBS Lett 205(1):47–50

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1986b) Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells. FEBS Lett 197:115–120

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metalbinding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Google Scholar 

  • Grill EL, Löeffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavymetal-binding peptides of plants, are synthesized from glutathione by a specific ?-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Google Scholar 

  • Gupta M, Rai UN, Tripathi RD, Chandra P (1995). Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata. Chemosphere 30(10):2011–2020

    Google Scholar 

  • Gupta M, Tripathi RD, Rai UN, Chandra P (1998). Role of glutathione and phytochelatin in Hydrilla verticillata (l.f.) Royle and Vallisneria spiralis L. under mercury stress. Chemosphere 37:785–800

    Google Scholar 

  • Gupta M, Tripathi RD, Rai UN, Haq W (1999) Lead induced synthesis of metal binding peptides (Phytochelatins) in submerged macrophyte Vallisneria spiralis L. Physiol Mol Biol Plants 5:173–180

    Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2002) Possible roles of phytochelatins and glutathione metabolism in cadmium tolerance in chickpea roots. J Plant Res 115:429–437

    Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2004) Changes in levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J Plant Res 117:253–256

    Google Scholar 

  • Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, Connell MJO, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    Google Scholar 

  • Hall JL, Williams LE (2002) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Google Scholar 

  • Harada E, Choi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium.J Plant Physiol 158:655–661

    Google Scholar 

  • Harada E, von Roepenack-Lahaye E, Clemens S (2004) A cyanobacterial protein with similarity to phytochelatin synthases catalyses the conversion of glutathione to ?-glutamylcysteine and lacks phytochelatin synthase activity. Phytochemistry 65:3179–3185

    Google Scholar 

  • Harmens H, Hartog PRD, Ten Bookum WM, Verkleij JAC (1993) Increased zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. Plant Physiol 103:1305–1309

    Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Bookum WT, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Google Scholar 

  • He Z, Li J, Zhang H, Ma M (2004) Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Science 168:309–318

    Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    Google Scholar 

  • Hirata K, Tsujimoto Y, Namba T, Ohta T, Hirayanagi N, Miyasaka H, Zenk MH, Miyamoto K (2001) Strong induction of phytochelatin synthesis by zinc in marine green alga Dunaliella tertiolecta. J Biosci Bioeng 92:24–29

    Google Scholar 

  • Howden R, Cobbett CS (1992) Cadmium-sensitive mutants of Arabidopsis thaliana. Plant Physiol 99:100–107

    Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Google Scholar 

  • Inouhe M, Mitsumune M, Tohoyama H, Joho M, Murayama T (1991) Contributions of cell wall and metal-binding peptides in suspension-cultured cells of tomato. Bot Mag Tokyo 104:217–229

    Google Scholar 

  • Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho N (2000) Azuki bean cells A hypersensitive to Cadmium and do not synthesise phytochelatins. Plant Physiol 123:1029–1036

    Google Scholar 

  • Inzé D, van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Google Scholar 

  • Jocelyn PC (1972) Biochemistry of the SH group. The occuuence, chemical properties, metabolism and biological function of thiols and disulfides. Academic press, London

    Google Scholar 

  • Kägi JHR, Vallee BL (1960) Metallothionein: a Cadmium-and Zinc-containing Protein from Equine Renal Cortex. J Biol Chem 235:3460–3465

    Google Scholar 

  • Kägi JHR, Kojima Y (1987) Chemistry and biochemistry of metallothionein. Experientia Suppl 52:25–61

    Google Scholar 

  • Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homophytochelatins in Pisum sativumL. Plant Physiol 107:515–521

    Google Scholar 

  • Kneer R, Zenk MH (1997) The formation of Cd-phytochelatin complexes in plant cell cultures. Phytochemistry 44:69–74

    Google Scholar 

  • Kneer R, Kutchan TM, Hochberger A, Zenk MH (1992) Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch Microbiol 157:305–310

    Google Scholar 

  • Kondo N, Imai K, Isobe M, Goto T, Murasugi A, Wada-Nakagawa C, Hayashi Y (1984) Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast-separation, revision of structures and synthesis. Tetrahedron Lett 25:3869–3872

    Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Krämer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumuloation by Thlaspi caerulescensHálácsy. Plant Physiol 115:1641–1650

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Google Scholar 

  • Krotz RM, Evangelou BP, Wagner GJ (1989) Relationships between Cd, Zn, Cdpeptide and organic acid in tobacco suspension cells. Plant Physiol 91:780–787

    Google Scholar 

  • Landberg T, Greger M (2004) No phytochelatin (PC2 and PC3) detected in Salix viminalis. Physiol Plant 121:481–487

    Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1998) Altered zinc compartmentation in the root and stimulated Zn absorption both play a role in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883

    Google Scholar 

  • Lee S, Korban SS (2002) Transcriptional regualation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215:689–693

    Google Scholar 

  • Lee S, Kang BS (2005) Expression of Arabidopsis phytochelatin synthase 2 is too low to complement an AtPCS1-defective Cad 1-3 mutant. Mol Cells 19:81–87

    Google Scholar 

  • Lee S, Moon JS, Domier LL, Korban SS (2002) Molecular characterization of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physi Biochem 40:727–733

    Google Scholar 

  • Lee S, Moon JS, Ko T-S, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Google Scholar 

  • Li Z-S, Szczypka M, Lu Y-P, Thiele DJ, Rea PA (1996) The yeast cadmium factor protein (YCF1) is a vacuolar glutathione-S-conjugate pump. J Biol Chem 271:6509–6517

    Google Scholar 

  • Li Z-S, Lu Y-P, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-mediated transport of bis (glutathionato) cadmium. Proc Natl Acad Sci USA 94:42–47

    Google Scholar 

  • Li Y, Dhanker OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Google Scholar 

  • Löeffler S, Hochberger A, Grill E, Winnacker E-L, Zenk MH (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett 258:42–46

    Google Scholar 

  • Maier T, Yu C, Küllertz G, Clemens S (2003) Localization and functional characterization of metal-binding sites in phychelatin synthases. Planta 218:300–308

    Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    Google Scholar 

  • Marghoses M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813–4814

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Google Scholar 

  • Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of 2 metallothioneins and ?-glutamyl-transferase peptides in Candida glabrata. Proc Natl Acad Sci USA 85:8815–8819

    Google Scholar 

  • Mehra RK, Kodati R, Abdullah R (1995) Chain length-dependent Pb(II)-coordination in phytochelatins. Biochem Piophys Res Comm 215:730–738

    Google Scholar 

  • Mehra RK, Tran K, Scott GW, Mulchandani P, Saini SS (1996a) Ag(I)-binding to phytochelatins. J Inorg Biochem 61:15–142

    Google Scholar 

  • Mehra RK, Mielat J, Kodati VR, Abdullah R, Hunter TC, Mulchandani P (1996b) Optical spectroscopic and reverse-phase HPLC analyses of Hg(II)-binding to phytochelatins. Biochem J 314:73

    Google Scholar 

  • Mehra RK, Tripathi RD (2000) Phytochelatins and metal tolerance. In: Agarwal SB, Agarwal M (eds) Environmental Pollution and Plant Responses, Lewis Publishers, Boca Raton, FL, USA

    Google Scholar 

  • Miersch J, Tschimedbalshir Barlocher F, Grams Y, Pierau B, Schierhorn A, Kraus GJ (2001) Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia. Mycol Res 105:883–889

    Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1981) Purification and unique properties in UV and CD spectra of Cd-binding peptides 1 from Schizosachharomyyces pombe. Biochem Biophys Res Commun 103:1021–1028

    Google Scholar 

  • Murooka Y, Toyama M, Hong S-H, Gohya M, Ono H, Yamashita M, Hirayama N (2001) Genetic Design of Stable Metal-Binding Biomolecules, Oligomeric Metallothioneins. Biocatalysis Biotransformation 19:399–412

    Google Scholar 

  • Murooka Y, Ike A, Sriprang R, Yamashita M (2005) Bioremediation for heavy metals through symbiosis between leguminous plants and rhizobia. Abstract in ThirdInternational Conference on Plants and Environmental Pollution (ICPEP-3), pp 3

    Google Scholar 

  • Mutoh N, Hayashi Y (1988) Isolation of mutants of Schizosachharomyces pombe unable to synthesize cadystin, small Cd-binding peptides. Biochem Biophys Res Commun 151:32–39

    Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B 1:3–26

    Google Scholar 

  • Noctor G, Strohm M, Jouanin L, Kunert K-J, Foyer CH, Rennenberg H (1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing ?-glutamylcysteine synthetase. Plant Physiol 112:1071–1078

    Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    Google Scholar 

  • Ortiz DF, Ruscitli T, McCue KF, Ow DW (1995) Transport of metal binding peptides by HMT1: a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Google Scholar 

  • Oven M, Raith K, Neubert RHH, Kutchan TM, Zenk MH (2001) Homophytochelatins are synthesized in response to cadmium in Azuki beans. Plant Physiol 126:1275–1280

    Google Scholar 

  • Oven M, Grill E, Golan-Goldhirsh A, Kutchan TM, Zenk MH (2002a) Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60:467–474

    Google Scholar 

  • Oven M, Page JE, Zenk MH, Kutchan TM (2002b) Molecular characterization of the homo-phytochelatin synthase of soyabean Glycine max. J Biol Chem 277:4747–4754

    Google Scholar 

  • Pawlik-Skowronska B (2002) Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ Pollut 119:119–127

    Google Scholar 

  • Pawlik-Skowronska B (2003) When adapted to high zinc concentrations the periphytic green alga Stigeoclonium tenue produces high amounts of novel phytochelatinrelatedpeptides. Aquatic Toxicol 62:155–163

    Google Scholar 

  • Pawlik-Skowronska B, Sanità di Toppi L, Favali MA, Fossati F, Pirszel J, Skowronski T (2002) Lichens respond to heavy metals by phytochelatin synthesis. New Phytol 156:95–102

    Google Scholar 

  • Pawlik-Skowronska B, Pirszel J, Kalinowska R, Skowronski T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquatic Toxicol 70:201–212

    Google Scholar 

  • Persans M, Yan X, Patnoe JMML, Krämer U, Salt DE (1999) Molecular dissection of histidine’s role in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiol 121:1117–1126

    Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian Mustard. Plant Physiol 122:1171–1177

    Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    Google Scholar 

  • Rabenstein DL (1989) Metal complexes of glutathione and their biological significance. In: Dolphin D, Poulson R, Avramovic O (eds) Glutathione: Chemical, Biochemical and Medical aspects. John Wiley & Sons, New York, pp 147–186

    Google Scholar 

  • Rai UN, Tripathi RD, Gupta M, Chandra P (1995) Induction of phytochelatins under cadmium stress in water lettuce (Pistia stratiotes). J Environ Sci Hlth 30(9):2007–2026

    Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86

    Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiol 109:1141–1149

    Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytochelain and metallothioneins. Cell Biochem Biophys 31:19–48

    Google Scholar 

  • Rauser WE, Meuwly P (1995) Retention of cadmium in roots of maize seedlings. Plant Physiol 109:195–202

    Google Scholar 

  • Rea PA, Vatamaniuk OK, Rigden DJ (2004) Weed, worms, and more. Papain’s long lost cousin, phytochelatin synthase. Plant Physiol 136:2463–2474

    Google Scholar 

  • Rea PA (2006) Phytochelatin synthase, papain’s cousin, in stereo. PNAS 103: 507–508

    Google Scholar 

  • Rijstanbil JW, Haritonidis S, Malea P, Seferlis M, Wijnholds JA (1998) Thiol pools and glutathione redox ratios as possible indicators of copper toxicity in the green macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermakos Gulf (Greece, N Aegean Sea). Hydrobiologia 385:171–181

    Google Scholar 

  • Rijstenbil JW, Gerringa LJA (2002) Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwelli with a gradual increase in copper. Aquatic Toxicol56:115–131

    Google Scholar 

  • Ruotolo R, Peracchi A, Bolchi A, Infusini G, Amoresano A, Ottonello S (2004) Domain organization of phytochelatin synthase. Functional properties of truncated enzyme species identified by limited proteolysis. J Biol Chem 279:14686–14693

    Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136:2443–2450

    Google Scholar 

  • Salt DE, Wagner GJ (1993) Transport of Cd in tonoplast vesicles from oat roots. Evidence for a Cd/H antiport activity. J Biol Chem 268:1297–12302

    Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Google Scholar 

  • Salt DE, Pickeing IJ, Prince RC, Gleba D, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian mustard. Environ Sci Technol 31:1636–1644

    Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligand in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713–717

    Google Scholar 

  • Satofuka H, Fukui T, Takagi M, Atomi H, Imanaka T (2001) Metal-binding properties of phytochelatin-related peptides. J Inorg Biochem 86:595–602

    Google Scholar 

  • Sauge-Merle S, Cuiné S, Carrier P, Lecomte-Pradines C, Luu D-T, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Google Scholar 

  • Scarano, G, Morelli, E (2002) Characterization of cadmium-and lead-phytochelatin complexes formed in a marine microalga in response to metal exposure. BioMetals 15:145–151

    Google Scholar 

  • Schat, H, Llugany, M, Vooijs, R, Hartley-Whitaker, J, Bleeker, PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Google Scholar 

  • Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Google Scholar 

  • Scott N, Hatlelid KM, MacKenzie NE, Carter DE (1993) Reactions of arsenic (III) and arsenic (V) species with glutathione. Chem Res Toxicol 6:102–106

    Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M et al. (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Google Scholar 

  • Speiser DM, Abrahamson SL, Banuelos G, Ow DW (1992) Brassica juncea produces a phytochelatin-cadmium-sulfide complex. Plant Physiol 99:817–821

    Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa-an angiospermic parasite. J Plant Physiol 161:665–674

    Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Mol Biol 41:53–575

    Google Scholar 

  • Terry M. (2003) Phytoremediation of heavy metales from siols. Adances in Biochemical Engineering/Biotechnology 78:97–123

    Google Scholar 

  • Tong Y-P, Kneer R, Zhu Y-G (2004) Varuolar compartmentalization: a secondgeneration approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    Google Scholar 

  • Tripathi RD, Rai UN, Gupta M, Chandra P (1996) Induction of phytochelatins in Hydrilla verticillata (l.f.) Royle under cadmium stress. Bull Environ Contam Toxicol 56:505–512

    Google Scholar 

  • Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 292:653–659

    Google Scholar 

  • Tsuji N, Hirayanagi N, Iwabe O, Namba T, Tagawa M, Miyamoto S, Miyasaka H, Takagi M, Hirata K, Miyamoto K (2003) Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta. Phytochemistry 62:453–459

    Google Scholar 

  • Tsuji N, Nishikori S, Iwabe O, Shiraki K, Miyasaka H, Takagi M, Hirata K, Miyamoto K (2004) Characterization of phytochelatin synthase-like protein encoded by alr0975 from a prokaryote, Nostoc sp. PCC 7120. Biochem Biophys Res Commun 315:751–755

    Google Scholar 

  • Tsuji N, Nishikori S, Iwabe O, Matsumoto S, Shiraki K, Miyasaka H, Takagi M, Miyamoto K, Hirata K (2005) Comparative analysis of the two-step reaction catalysed by prokaryotic and eukaryotic phytochelatin synthase by an ion-pair liquid chromatography assay. Planta 222(1):181–191

    Google Scholar 

  • Tu S, Ma LQ, MacDonald GE, Bondada B (2004) Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ Exp Bot 51:121–131

    Google Scholar 

  • US EPA (2000) Introduction to phytoremediation. EPA Document #EPA/600/R-99/107 U.S.Environmental protection agency office of research and development, Woshington DC

    Google Scholar 

  • US Department of energy (2000) Proceedings from the workshop on phytoremediation of inorganic contaminants, Idaho National Engineering and Environmental Laboratory Document # INEEL/EXT-2000-00207, IDHO Falls, ID

    Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalysed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459

    Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820

    Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin synthase, a dipeptidyl transferase that undergoes multisite acylation with c-glutamylcysteine during catalysis. J Biol Chem 279:22449–22460

    Google Scholar 

  • Vivares D, Arnoux P, Pignol D (2005) A papain-like enzyme at work: native and acylenzyme intermediate structures in phytochelatin synthesis. PNAS 102:18848–18853

    Google Scholar 

  • Voet D, Voet JG (2004) Biochemistry, Ed. 3. John Wiley & Sons, New York

    Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium binding peptides in tobacco leaves: Implication of a transport function for cadmium binding peptides. Plant Physiol 92:1086–1093

    Google Scholar 

  • Wang J, Evangelou BP, Nielsen MT, Wagner GJ (1991) Computer simulated evolution of possible mechanisms for quenching heavy metal ion activity in plant vacuoles. Plant Physiol 97:1154–1160

    Google Scholar 

  • Wójcik M, Vangronsveld J, Tukendorf A (2005) Cadmium tolerance in Thlaspi caerulescens I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ Exp Bot 53:151–161

    Google Scholar 

  • Yan S-L, Tsay C-C, Chen Y-R (2000) Isolation and characterization of phytochelatin synthase in rice seedlings. Proc Natl Sci Counc ROC (B) 24:202–207

    Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Google Scholar 

  • Zhang W, Cai Y, Downum KR, Ma LQ (2004) Arsenic complexes in the Arsenic hyperaccumlator Pteris vittata (Chinese Brake fern). J Chromato A 1043:249–254

    Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999a) Cadmium tolerance and accumulation in Indian Mustard is enhanced by overexpressing ?-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999b) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. PlantPhysiol 119:73–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grill, E., Mishra, S., Srivastava, S., Tripathi, R. (2007). Role of Phytochelatins in Phytoremediation of Heavy Metals. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_5

Download citation

Publish with us

Policies and ethics