Skip to main content

Abstract

Natural sediments are not sterile but inhabited by a large range of microorganisms (Riding and Awramik, 2000) and higher forms of life. As a consequence, these organisms participate in many chemical processes in sediments, in the interaction between sediments and the water phase and in sediment dynamics. In fluvial environments, the interface between the major water body and the sediment, is a very active zone both in physicochemical and biological terms. Especially in highly permeable sediments, the dynamic flux of energy, nutrients, metabolites and particles (including microorganisms) is interdependent with local hydrodynamics (Huettel et al. 2003). Due to their slime matrix, active microbial communities at the water-sediment interface, develop into macroscopic scale structures which modify sediment topography and frictional resistance. These surface alterations have repercussions in fluid flow, shear forces and other physical parameters, especially at the benthic boundary layer. Microbial colonization is not limited to the sediment-liquid interface; equally important on their effect on river sediment hydrodynamics, is their ability to develop at significant sediment depths. At this level, permeability and hydraulic conductivity changes caused by microbial colonization, can have a profound effect on sediment cohesion and sorption/ desorption processes (Leon-Morales et al. this vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison D (2003) The biofilm matrix. Biofouling 19(2):139–150

    Article  Google Scholar 

  • Battin TJ, Sengschmitt D (1999) Linking sediment biofilms, hydrodynamics, and river bed clogging: evidence from a large river. Microb Ecol 37:185–196

    Article  Google Scholar 

  • Black KS, Tolhurst DJ, Paterson DM, Hagerthey SE (2002) Working with natural cohesive sediments. J Hydraul Eng, pp 2–8

    Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial Biofilms. Annual Review of Microbiology 49:711–745

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Debeer D, Caldwell D, Korber D, James G (1994) Biofilms, the Customized Microniche. Journal of Bacteriology 176(8):2137–2142

    Google Scholar 

  • Chamberlain AHL (1997) Matrix polymers: the key to biofilm processes. In: Wimpenny J, Handley PS, Gilbert P, Lappin-Scott H, Jones M (eds) Biofilms: Community Interactions and Control., UK, BioLine, pp 41–46

    Google Scholar 

  • de Brouwer JFC, Wolfstein K, Ruddy GK, Jones TER, Stal LJ (2005) Biogenic Stabilization of Intertidal Sediments: The Importance of Extracellular Polymeric Substances Produced by Benthic Diatoms. DOI 49:501–521

    Google Scholar 

  • Dade WB, Davis JD, Nichols PD, Nowell ARM, Thistle D, Trexler MB, White DC (1990) Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiol 8:1–16

    Google Scholar 

  • Decho AW (1994) Molecular-scale events influencing the macroscale cohesiveness of exopolymers. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments, BIS-Verlag, Oldenburg, pp 135–148

    Google Scholar 

  • Dignac MFU, Rybacki D, Bruchet A, Snidaro D, Scribe P (1998) Chemical description of extracellular polymers: implication on activated sludge floc structure. Wat Sci Tech 38:45–53

    Article  Google Scholar 

  • Hemming HC, Leis A (2002) Sorption properties of biofilms. In: Bitton (ed) Encyclopedia of environmental microbiology, Vol. 5. John Wiley & Sons, Inc., New York, pp 2958–2967

    Google Scholar 

  • Hemming HC, Wingender J (2002) Extracellular polymeric substances (EPS): Structural, ecological and technical aspects. In: Bitton G (ed) Encyclopedia of Environmental Microbiology, vol. 4. John Wiley & Sons, Inc, New York, pp 1223–1231

    Google Scholar 

  • Hemming HC, Wingender J (2003) The crucial role of extracellullar polymeric substances in biofilms. In: Wuertz S, Bishop P, Wilderer P (eds) Biofilms in wastewater treatment. An interdisciplinary approach., IWA Publishing, London, pp 401

    Google Scholar 

  • Hemming H-C, Wingender J, Mayer C, Körstgens V, Borchard W (2000a) Cohesiveness in biofilm matrix polymers. In: Lappin-Scott H, Gilbert P, Wilson M, Allison D (eds) Community structure and co-operation in biofilms, SGM symposium 59, Cambridge University Press, pp 87–105

    Google Scholar 

  • Hemming H-C, Wingender J, Griebe T, Mayer C (2000b) Physico-chemical properties of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control, Harwood academic publishers

    Google Scholar 

  • Frølund BG, Nielsen PH (1995) Enzymatic activity in the activated-sludge floc matrix. Appl Microbiol Biotechnol 43:755–761

    Article  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64(7):2743–2747

    Google Scholar 

  • Hoffman M, Decho AW (1999) Extracellular enzymes within microbial biofilms and the role of the extracellular polymeric matrix. In: Wingender J, Neu TR, Hemming HC (eds) Microbial extracellular polymeric substances. Springer-Verlag, pp 217–230

    Google Scholar 

  • Huettel M, Røy H, Precht E, Ehrenhauss S (2003) Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494:231–236

    Article  Google Scholar 

  • Körstgens V, Hemming H-C, Wingender J, Borchard W (2001) Uniaxial compression measurement device for the investigation of the mechanical stability of biofilms. J Microbiol Meth 46:9–16

    Article  Google Scholar 

  • Krumbein WE, Paterson DM, Stal LJ (1994) General discussion. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. BIS Oldenburg, pp 433–435

    Google Scholar 

  • Langley S, Beveridge TJ (1999) Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm. Canadian Journal of Microbiology 45(7):616–622

    Article  Google Scholar 

  • Leon Morales CF, Leis AP, Strathmann M, Flemming HC (2004) Interactions between laponite and microbial biofilms in porous media: implications for colloid transport and biofilm stability. Water Research 38(16):3614–3626

    Article  Google Scholar 

  • Macedo AJ, Kuhlicke U, Neu T, Timmis KN, Abraham W-R (2005) Three stages of a biofilm community developing at the liquid-liquid interface between polychlorinated biphenyls and water. Applied and Environmental Microbiology 71(11):7301–7309

    Article  Google Scholar 

  • Madsen KN, Nilsson P, Sundbäck K (1993) The influence of benthic microalgae on the stability of a subtidal sediment. J Exp Mar Biol Ecol 170:159–177

    Article  Google Scholar 

  • Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Hemming HC (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26(1):3–16

    Article  Google Scholar 

  • Neu T (1996) Significance of bacterial surface active compounds in interaction of bacteria with surfaces. Microbiological Reviews 60:151–166

    Google Scholar 

  • Neu TR, Lawrence JD (1997) Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol Ecol 24:11–25

    Article  Google Scholar 

  • Paterson DM (1997) Biological mediation of sediment erodibility. In: Burt N, Pareker R, Watts J (eds) Cohesive sediments. Wiley, New York, pp 215–229

    Google Scholar 

  • Ramsay BR, de Tremblay M, Chavarie C (1988) A method for the quantification of bacterial protein in the presence of Jarosite. Geomicrobiol J 3:171–177

    Article  Google Scholar 

  • Riding R, Amrawik SM (2000) Microbial sediments. Springer-Verlag, New York, Heidelberg, 331 pp

    Google Scholar 

  • Sar P, Kazy SK, Asthana RK, Singh SP (1998) Nickel uptake by Pseudomonas aeruginosa: role of modifying factors. Current Microbiology 37:306–311

    Article  Google Scholar 

  • Schmitt J, Nivens D, White DC, Hemming H-C (1995) Changes of biofilm properties in response to sorbed substances–an FTIR-ATR study. Water Science and Technology 32(8):149–155

    Article  Google Scholar 

  • Schultze-Lam S, Fortin D, Davis BS, Beveridge TJ (1996) Mineralization of bacterial surfaces. Chem Geol 132:171–181

    Article  Google Scholar 

  • Skoog DA, West DM, Holler FJ (1996) Fundamentals of analytical chemistry, Saunders college publishing

    Google Scholar 

  • Späth R, Flemming HC, Wuertz S (1998) Sorption properties of biofilms. Water Science and Technology 37(4–5):207–210

    Article  Google Scholar 

  • Spiers AJ, Bohannon J, Gehrig SM, Rainey PB (2003) Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50(1): 15–27

    Article  Google Scholar 

  • Stal LJ, de Brouwer JFC (2003) Biofilm formation by benthic diatoms and their influence on the stabilization of interdital mudflats. Ber Forsch.-Zentr., Terramare 12:109–111

    Google Scholar 

  • Strathmann M, Leon Morales CF, Flemming H-C (2006) Influence of biofilms on colloid mobility in the subsurface. In: Frimmel HE, Flemming H-C, Förstner U (eds) Colloid mobility, Springer-Verlag, Heidelberg, in press

    Google Scholar 

  • Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotech Adv 12:393–448

    Article  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix–an immobilized but dynamic microbial environment. Trends in Microbiology 9:222–227

    Article  Google Scholar 

  • Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger K-E (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323

    Article  Google Scholar 

  • Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59(10):3280–3286

    Google Scholar 

  • Vogt M, Flemming HC, Veeman WS (2000) Diffusion in Pseudomonas aeruginosa biofilms: a pulsed field gradient NMR study. J Biotechnol 77(1):137–146

    Article  Google Scholar 

  • Wingender J, Jaeger K-E (2002) Extracellular enzymes in biofilms. In: Bitton G (ed) Encyclopedia of Environmental Microbiology, vol. 3. John Wiley & Sons, Inc, New York, pp 1207–1223

    Google Scholar 

  • Wingender J, Jäger K-E, Flemming H-C (1999) Interactions between extracellular enzymes and polysaccharides. In: Wingender J, Neu T, Flemming H-C (eds) Microbial extracellular polymer substances, Springer-Verlag, Heidelberg, Berlin, pp 231–251

    Google Scholar 

  • Wingender J, Neu TR, Flemming H-C (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR, Flemming H-C (eds) Microbial Extracellular Polymeric Substances. Springer Verlag, Berlin, pp 1–19

    Google Scholar 

  • Yallop ML, de Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphyto-benthos. Estuar Coast Shelf Sci 39:565–582

    Article  Google Scholar 

  • Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass, and sediment stability of intertidal sediments. Microb Ecol 39(2):116–127

    Article  Google Scholar 

References

  • Battin TJ, Sengschmitt D (1999) Linking sediment biofilms, hydrodynamics, and river bed clogging: evidence from a large river. Microb Ecol 37:185–196

    Article  Google Scholar 

  • de Brouwer JFC, Ruddy GK, Jones TER, Stal LJ (2002) Sorption of EPS to sediment particles and the effect on the rheology of sediment slurries. Biogeochemistry 61(1):57

    Article  Google Scholar 

  • Hemming H-C, Wingender J (2002) Extracellular polymeric substances (EPS): Structural, ecological and technical aspects. In: Bitton G (ed) Encyclopedia of Environmental Microbiology, vol. 4. John Wiley & Sons, Inc., New York, pp 1223–1231

    Google Scholar 

  • Förstner U (2004) Sediment dynamics and pollutant mobility in rivers: an interdisciplinary approach. Lakes and Reservoirs: Research and Management 9:25–40

    Article  Google Scholar 

  • Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8):1749–1758

    Article  Google Scholar 

  • Grobe S, Wingender J, Trüper HG (1995) Characterization of mucoid Pseudomonas aeruginosa strains isolated from technical water systems. J Appl Bacteriol 79:94–102

    Google Scholar 

  • Körstgens V, Flemming H-C, Wingender J, Borchard W (2001) Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Wat Sci Tech 43(6):49–57

    Google Scholar 

  • Leon Morales CF, Leis AP, Strathmann M, Flemming H-C (2004) Interactions between laponite and microbial biofilms in porous media: implications for colloid transport and biofilm stability. Water Res 38(16):3614–3626

    Article  Google Scholar 

  • Sutherland T, Grant J, Amos C (1998) The effect of carbohydrate production by the diatom Nitzschia curvilineata on the erodibility of sediment. Limnology Oceanography 43:65–72

    Article  Google Scholar 

  • Wingender J, Strathmann M, Rode A, Leis A, Flemming H-C (2001) Isolation and Biochemical Characterization of Extracellular Polymeric Substances from Pseudomonas aeruginosa. Methods Enzymol 336(25):302–314

    Article  Google Scholar 

  • Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass, and sediment stability in biofilms of intertidal sediments. Microb Ecol 39(2): 116–127

    Article  Google Scholar 

References

  • Bedell JP, Neto M, Pressiat F (2005) Opérations de dragage, pollution potentielle et enjeux environnementaux. Les sédiments du Rhône Grands enjeux, premières réponses. Journée ZABR, Valence, France. 10 juin 2005. ppll3–121

    Google Scholar 

  • Brohon B, Delolme C, Gourdon R (1999) Qualification of soils through microbial activities measurements: influence of the storage period on INT-reductase, phosphatase and respiration. Chemosphere 38:1973–1984

    Article  Google Scholar 

  • Caetano M, Madureira MJ, Vale C (2003) Metal remobilisation during resuspension of anoxic contaminated sediment: short-term laboratory study. Water Air Soil Poll 143:23–40

    Article  Google Scholar 

  • Caille N, Tiffreau C, Leyval C, Morel JL (2003) Solubility of metals in an anoxic sediment during prolonged aeration. Sci Total Environ 301:239–250

    Article  Google Scholar 

  • Calmano W, Hong J, Forstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235

    Google Scholar 

  • Carpentier S, Moilleron R, Beltran C, Herve D, Thevenot D (2002) Quality of dredged material in the river Seine basin (France). II. Micropollutants. Sci Total Environ 299:57–72

    Article  Google Scholar 

  • Engelen B, Meinken K, von Wintzingerode F, Heuer H, Malkomes H-P, Backhaus H (1998) Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl Environ Microbiol 64:2814–2821

    Google Scholar 

  • Hardy D (2002) Historique National des opérations de curage et perspectives, Ministère de l’écologie et du développement durable, pp l7

    Google Scholar 

  • McNamara NP, Black HIJ, Beresford NA, Parekh NR (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol 24:117–132

    Article  Google Scholar 

  • Pettine M, Camusso M, Martinotti W, Marchetti R, Passino R, Queirazza G (1994) Soluble and particulate metals in the Po River: Factors affecting concentrations and partitioning. Sci Total Environ 145:243–265

    Article  Google Scholar 

  • Poly F (2000) Réponses des communautés bactériennes telluriques à des perturbations chimiques complexes: Activités potentielles et empreintes génétiques, Université Claude Bernard Lyon 1, Lyon, pp 159

    Google Scholar 

  • Ranjard L, Richaume A, Jocteur-Monrozier L, Nazaret S (1997) Response of soil bacteria to Hg(II) in relation to soil characteristics and cell location. FEMS Microbiol Ecol 24(4):321–331

    Article  Google Scholar 

  • Sen TK, Khilar KC (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science 119:71–96

    Article  Google Scholar 

  • Stemmer M, Gerzabek MH, Kandeler E (1998) Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol Biochem 30:9–17

    Article  Google Scholar 

  • Stephens SR, Alloway BJ, Parker A, Carter JE and Hodson ME (2001) Changes in the leachability of metals from dredged canal sediments during drying and oxidation. Environ Pollut 114:407–413

    Article  Google Scholar 

  • Trevors JT (1996) Sterilization and inhibition of microbial activity in soil. J Microbiol Methods 26:53–59

    Article  Google Scholar 

  • van Elsas JD, Trevors JT, Wellington EMH (1997) Modern soil microbiology. Marcel Dekker, INC, pp 683

    Google Scholar 

  • van Rijn J, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: Theory and applications. Aquacult Eng 34:364–376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flemming, HC., Strathmann, M., Morales, C.F.L. (2007). Microbial Effects. In: Westrich, B., Förstner, U. (eds) Sediment Dynamics and Pollutant Mobility in Rivers. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34785-9_9

Download citation

Publish with us

Policies and ethics