Skip to main content
  • 3817 Accesses

Abstract

Having summarized the fundamental notions of quantum theory in Chap. 1, here we employ the classical Maxwell equations to quantize the electromagnetic field in vacuum. We then consider various quantum states of the field, followed by the discussion of the photon measurement and the information that it can yield. In the last section of this chapter, we develop several quantum mechanical representations of the field, which can be employed to conveniently evaluate the expectation values of various functions of field operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 2

  1. R. Hanbury-Brown and R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177, 27 (1956).

    Article  Google Scholar 

  2. R. J. Glauber, The quantum theory of optical coherence, Phys Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. J. Glauber, Coherent and incoherent states of the radiation field, Phys Rev. 131, 2766 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. C. G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Phys. Rev. Lett. 10, 277 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. L. Mandel and E. Wolf, Coherence properties of optical fields, Rev. Mod. Phys. 37, 231 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  6. K. E. Cahill and R. J. Glauber, Density operators and quasiprobability distributions, Phys Rev. 177, 1822 (1969).

    ADS  Google Scholar 

  7. D. F. Walls, Squeezed states of light, Nature 306, 141 (1983).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Quantum Theory of Radiation. In: Fundamentals of Quantum Optics and Quantum Information. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34572-5_2

Download citation

Publish with us

Policies and ethics