Skip to main content

Prescription of Antimicrobial Agents in Patients Undergoing Continuous Renal Replacement Therapy

  • Chapter
Infectious Diseases in Critical Care

Abstract

The prescription of antibiotics to critically ill patients is an extremely common intervention. Early and appropriate antimicrobial administration has been repeatedly shown to improve mortality in septic patients [17]. However, whilst the choice of drug class will normally be influenced by numerous factors such as the likely organism, the current unit flora, and the patient’s comorbidities, the dose prescribed will usually be a standard one, perhaps modified by an estimated glomerular filtration rate (GFR) or a suggested “dialysis dose”. Yet, in the critically ill, a host of factors may influence the therapeutic level of prescribed antibiotics. These include increased volumes of distribution, changes in protein binding and increased extrarenal and renal losses all of which may contribute to lower than predicted drug levels when the usual patient dosage regimens are used [8]. The problem becomes more complex when renal failure supervenes. The addition of renal replacement therapy, restoration of renal function during recovery and alterations in volume of distribution may all lead to lowered tissue levels of antibiotics, with the potential to increase morbidity and mortality through inadequate antibiotic activity [9, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kollef MH, Sherman G, Ward S, Fraser VJ (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115:462–474

    Article  CAS  PubMed  Google Scholar 

  2. Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C (2003) Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 31:2742–2751

    Article  PubMed  Google Scholar 

  3. MacArthur RD, Miller M, Albertson T, Panacek E, Johnson D, Teoh L, Barchuk W (2004) Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis 38:284–288

    Article  PubMed  Google Scholar 

  4. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118:146–155

    Article  CAS  PubMed  Google Scholar 

  5. Valles J, Rello J, Ochagavia A, Garnacho J, Alcala MA (2003) Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest 123:1615–1624

    Article  PubMed  Google Scholar 

  6. Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115:529–535

    Article  PubMed  Google Scholar 

  7. Micek ST, Isakow W, Shannon W, Kollef MH (2005) Predictors of hospital mortality for patients with severe sepsis treated with Drotrecogin alfa (activated). Pharmacotherapy 25:26–34

    Article  CAS  PubMed  Google Scholar 

  8. Yagasaki K, Gando S, Matsuda N, Kameue T, Ishitani T, Hirano T, Iseki K (2003) Pharmacokinetics and the most suitable dosing regimen of fluconazole in critically ill patients receiving continuous hemodiafiltration. Intensive Care Med 29:1844–1848

    Article  PubMed  Google Scholar 

  9. Eckhardt A, Borner K, Keller F, Zellner D (1997) Dosage adjustment of antiinfective therapy in patients with renal impairment. Int J Clin Pharmacol Ther 35:99–102

    CAS  PubMed  Google Scholar 

  10. Joynt GM, Lipman J, Gomersall CD, Young RJ, Wong EL, Gin T (2001) The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 47:421–429

    Article  CAS  PubMed  Google Scholar 

  11. Roberts J, Lipman J (2006) Antibacterial dosing in Intensive Care: Pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet 45:755–773

    Article  CAS  PubMed  Google Scholar 

  12. Freebairn RC, Lipman J (1993) Renal replacement therapy for the critically ill — precarious progress. Part I. Definitions and physiological aspects. S Afr J Surg 31:114–120

    CAS  PubMed  Google Scholar 

  13. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–212

    Article  PubMed  Google Scholar 

  14. Dager WE (2006) Filtering out important considerations for developing drug-dosing regimens in extended daily dialysis. Crit Care Med 34:240–241

    Article  PubMed  Google Scholar 

  15. Kroh UF (2001) Pharmacokinetic studies in patients on continuous renal replacement therapies. Intensive Care Med 27:629–630

    Article  CAS  PubMed  Google Scholar 

  16. Zhou J, Dong Y, Zhao X, Lee S, Amin A, Ramaswamy S, Domagala J, Musser JM, Drlica K (2000) Selection of antibiotic-resistant bacterial mutants: allelic diversity among fluoroquinolone-resistant mutations. J Infect Dis 182:517–525

    Article  CAS  PubMed  Google Scholar 

  17. Bellomo R, Ronco C (1998) Indications and criteria for initiating renal replacement therapy in the intensive care unit. Kidney Int Suppl 66:S106–109

    Google Scholar 

  18. Palevsky PM (2005) Renal replacement therapy I: indications and timing. Crit Care Clin 21:347–356

    Article  PubMed  Google Scholar 

  19. Waldrop J, Ciraulo DL, Milner TP, Gregori D, Kendrick AS, Richart CM, Maxwell RA, Barker DE (2005) A comparison of continuous renal replacement therapy to intermittent dialysis in the management of renal insufficiency in the acutely III surgical patient. Am Surg 71:36–39

    PubMed  Google Scholar 

  20. Marshall MR, Ma T, Galler D, Rankin AP, Williams AB (2004) Sustained low-efficiency daily diafiltration (SLEDD-f) for critically ill patients requiring renal replacement therapy: towards an adequate therapy. Nephrol Dial Transplant 19:877–884

    Article  PubMed  Google Scholar 

  21. Freebairn RC, Lipman J (1993) Renal replacement therapy for the critically ill-precarious progress. Part II. Technical aspects and clinical application. S Afr J Surg 31:147–151

    CAS  PubMed  Google Scholar 

  22. Kielstein JT, Czock D, Schopke T, Hafer C, Bode-Boger SM, Kuse E, Keller F, Fliser D (2006) Pharmacokinetics and total elimination of meropenem and vancomycin in intensive care unit patients undergoing extended daily dialysis. Crit Care Med 34:51–56

    Article  CAS  PubMed  Google Scholar 

  23. Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346:305–310

    Article  PubMed  Google Scholar 

  24. Kopple JD, Jones MR, Keshaviah PR, Bergstrom J, Lindsay RM, Moran J, Nolph KD, Teehan BP (1995) A proposed glossary for dialysis kinetics. Am J Kidney Dis 26:963–981

    Article  CAS  PubMed  Google Scholar 

  25. Dorman T, Swoboda S, Zarfeshenfard F, Trentler B, Lipsett PA (1998) Impact of altered aminoglycoside volume of distribution on the adequacy of a three milligram per kilogram loading dose. Critical Care Research Group. Surgery 124:73–78

    CAS  PubMed  Google Scholar 

  26. Beckhouse MJ, Whyte IM, Byth PL, Napier JC, Smith AJ (1988) Altered aminoglycoside pharmacokinetics in the critically ill. Anaesth Intensive Care 16:418–422

    CAS  PubMed  Google Scholar 

  27. Belzberg H, Zhu J, Cornwell EE, 3rd, Murray JA, Sava J, Salim A, Velmahos GC, Gill MA (2004) Imipenem levels are not predictable in the critically ill patient. J Trauma 56:111–117

    Article  PubMed  Google Scholar 

  28. Wong PY, Zhu M, Li RC (2000) Pharmacokinetic and pharmacodynamic interactions between intravenous ciprofloxacin and oral ferrous sulfate. J Chemother 12:286–293

    CAS  PubMed  Google Scholar 

  29. Ronchera-Oms CL, Tormo C, Ordovas JP, Abad J, Jimenez NV (1995) Expanded gentamicin volume of distribution in critically ill adult patients receiving total parenteral nutrition. J Clin Pharm Ther 20:253–258

    Article  CAS  PubMed  Google Scholar 

  30. Pittrow L, Penk A (1999) Special pharmacokinetics of fluconazole in septic, obese and burn patients. Mycoses 42Suppl 2:87–90

    CAS  PubMed  Google Scholar 

  31. Zaske DE, Strate RG, Kohls PR (1991) Amikacin pharmacokinetics: wide interpatient variation in 98 patients. J Clin Pharmacol 31:158–163

    CAS  PubMed  Google Scholar 

  32. Lugo G, Castaneda-Hernandez G (1997) Relationship between hemodynamic and vital support measures and pharmacokinetic variability of amikacin in critically ill patients with sepsis. Crit Care Med 25:806–811

    Article  CAS  PubMed  Google Scholar 

  33. Hansen E, Bucher M, Jakob W, Lemberger P, Kees F (2001) Pharmacokinetics of levofloxacin during continuous venovenous hemofiltration. Intensive Care Med 27:371–375

    Article  CAS  PubMed  Google Scholar 

  34. Ittner KP, Roth G, Gruber M, Pawlik M, Taeger K (2005) Clearance of moxifloxacin during continuous haemofiltration (CVVHF) in vitro. J Antimicrob Chemother 56:360–364

    Article  CAS  PubMed  Google Scholar 

  35. Uchino S, Cole L, Morimatsu H, Goldsmith D, Bellomo R (2002) Clearance of vancomycin during high-volume haemofiltration: impact of pre-dilution. Intensive Care Med 28:1664–1667

    Article  PubMed  Google Scholar 

  36. Choi G, Gomersall CD, Lipman J, Wong A, Joynt GM, Leung P, Ramsay SJ, Ho OM (2004) The effect of adsorption, filter material and point of dilution on antibiotic elimination by haemofiltration an in vitro study of levofloxacin. Int J Antimicrob Agents 24:468–472

    CAS  PubMed  Google Scholar 

  37. Dailly E, Kergueris MF, Pannier M, Jolliet P, Bourin M (2003) Population pharmacokinetics of imipenem in burn patients. Fundam Clin Pharmacol 17:645–650

    Article  CAS  PubMed  Google Scholar 

  38. Lipman J, Wallis SC, Boots RJ (2003) Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg 97:1149–1154, table of contents

    Article  CAS  PubMed  Google Scholar 

  39. Wells M, Lipman J (1997)Measurements of glomerular filtration in the intensive care unit are only a rough guide to renal function. S Afr J Surg 35:20–23

    CAS  PubMed  Google Scholar 

  40. Jones EM, McMullin CM, Hedges AJ, Lovering AM, White LO, Reeves DS, MacGowan AP (1997) The pharmacokinetics of intravenous ciprofloxacin 400 mg 12 hourly in patients with severe sepsis: the effect of renal function and intra-abdominal disease. J Antimicrob Chemother 40:121–124

    Article  CAS  PubMed  Google Scholar 

  41. Malone RS, Fish DN, Abraham E, Teitelbaum I (2001) Pharmacokinetics of levofloxacin and ciprofloxacin during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother 45:2949–2954

    Article  CAS  PubMed  Google Scholar 

  42. Brier ME, Stalker DJ, Aronoff GR, Batts DH, Ryan KK, O’Grady M, Hopkins NK, Jungbluth GL (2003) Pharmacokinetics of linezolid in subjects with renal dysfunction. Antimicrob Agents Chemother 47:2775–2780

    Article  CAS  PubMed  Google Scholar 

  43. Vos MC, Vincent HH, Yzerman EP (1992) Clearance of imipenem/cilastatin in acute renal failure patients treated by continuous hemodiafiltration (CAVHD). Intensive Care Med 18:282–285

    Article  CAS  PubMed  Google Scholar 

  44. Tegeder I, Schmidtko A, Brautigam L, Kirschbaum A, Geisslinger G, Lotsch J (2002) Tissue distribution of imipenem in critically ill patients. Clin Pharmacol Ther 71:325–333

    Article  CAS  PubMed  Google Scholar 

  45. Tegeder I, Bremer F, Oelkers R, Schobel H, Schuttler J, Brune K, Geisslinger G (1997) Pharmacokinetics of imipenem-cilastatin in critically ill patients undergoing continuous venovenous hemofiltration. Antimicrob Agents Chemother 41:2640–2645

    CAS  PubMed  Google Scholar 

  46. Macias WL, Mueller BA, Scarim SK (1991) Vancomycin pharmacokinetics in acute renal failure: preservation of nonrenal clearance. Clin Pharmacol Ther 50:688–694

    CAS  PubMed  Google Scholar 

  47. Walstad RA, Aanderud L, Thurmann-Nielsen E (1988) Pharmacokinetics and tissue concentrations of ceftazidime in burn patients. Eur J Clin Pharmacol 35:543–549

    Article  CAS  PubMed  Google Scholar 

  48. Contreras AM, Ramirez M, Cueva L, Alvarez S, de Loza R, Gamba G (1994) Low serum albumin and the increased risk of amikacin nephrotoxicity. Rev Invest Clin 46:37–43

    CAS  PubMed  Google Scholar 

  49. Jeffrey RF, Khan AA, Prabhu P, Todd N, Goutcher E, Will EJ, Davison AM (1994) A comparison of molecular clearance rates during continuous hemofiltration and hemodialysis with a novel volumetric continuous renal replacement system. Artif Organs 18:425–428

    Article  CAS  PubMed  Google Scholar 

  50. Joy MS, Matzke GR, Frye RF, Palevsky PM(1998) Determinants of vancomycin clearance by continuous venovenous hemofiltration and continuous venovenous hemodialysis. Am J Kidney Dis 31:1019–1027

    Article  CAS  PubMed  Google Scholar 

  51. Isla A, Gascon AR, Maynar J, Arzuaga A, Toral D, Pedraz JL (2005) Cefepime and continuous renal replacement therapy (CRRT): in vitro permeability of two CRRT membranes and pharmacokinetics in four critically ill patients. Clin Ther 27:599–608

    Article  CAS  PubMed  Google Scholar 

  52. Matzke GR, Frye RF, Joy MS, Palevsky PM (2000) Determinants of ceftriaxone clearance by continuous venovenous hemofiltration and hemodialysis. Pharmacotherapy 20:635–643

    Article  CAS  PubMed  Google Scholar 

  53. Matzke GR, Frye RF, Joy MS, Palevsky PM (2000) Determinants of ceftazidime clearance by continuous venovenous hemofiltration and continuous venovenous hemodialysis. Antimicrob Agents Chemother 44:1639–1644

    Article  CAS  PubMed  Google Scholar 

  54. Phillips GJ, Davies JG, Olliff CJ, Kingswood C, Street M (1998) Use of in vitro models of haemofiltration and haemodiafiltration to estimate dosage regimens for critically ill patients prescribed cefpirome. J Clin Pharm Ther 23:353–359

    Article  CAS  PubMed  Google Scholar 

  55. Kumar D, Arora A, Singh NP, Kohli R, Kar P, Das BC (2005) Hepatitis G virus infection in hemodialysis patients from urban Delhi. Ren Fail 27:87–93

    PubMed  Google Scholar 

  56. Pinder M, Bellomo R, Lipman J (2002) Pharmacological principles of antibiotic prescription in the critically ill. Anaesth Intensive Care 30:134–144

    CAS  PubMed  Google Scholar 

  57. Buijk SE, Mouton JW, Gyssens IC, Verbrugh HA, Bruining HA (2002) Experience with a once-daily dosing program of aminoglycosides in critically ill patients. Intensive Care Med 28:936–942

    Article  CAS  PubMed  Google Scholar 

  58. Denaro CP, Ravenscroft PJ (1987) Usefulness of estimating individual pharmacokinetic data for aminoglycoside therapy in seriously ill patients. Aust N Z J Med 17:526–532

    CAS  PubMed  Google Scholar 

  59. Hatala R, Dinh T, Cook DJ (1996) Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med 124:717–725

    CAS  PubMed  Google Scholar 

  60. Chow AW, Azar RM (1994) Glycopeptides and nephrotoxicity. Intensive Care Med 20Suppl 4:S23–29

    Article  PubMed  Google Scholar 

  61. Chow KM, Szeto CC, Hui AC, Li PK (2004) Mechanisms of antibiotic neurotoxicity in renal failure. Int J Antimicrob Agents 23:213–217

    Article  CAS  PubMed  Google Scholar 

  62. Martinez-Rodriguez JE, Barriga FJ, Santamaria J, Iranzo A, Pareja JA, Revilla M, dela Rosa CR (2001) Nonconvulsive status epilepticus associated with cephalosporins in patients with renal failure. Am J Med 111:115–119

    Article  CAS  PubMed  Google Scholar 

  63. Herishanu YO, Zlotnik M, Mostoslavsky M, Podgaietski M, Frisher S, Wirguin I (1998) Cefuroxime-induced encephalopathy. Neurology 50:1873–1875

    CAS  PubMed  Google Scholar 

  64. Ferrara N, Abete P, Giordano M, Ferrara P, Carnovale V, Leosco D, Beneduce F, Ciarambino T, Varricchio M, Rengo F (2003) Neurotoxicity induced by Cefepime in a very old hemodialysis patient. Clin Nephrol 59:388–390

    CAS  PubMed  Google Scholar 

  65. Norrby SR (1985) Imipenem/cilastatin: rationale for a fixed combination. Rev Infect Dis 7Suppl 3:S447–451

    CAS  PubMed  Google Scholar 

  66. Drusano GL (1986) An overview of the pharmacology of imipenem/cilastatin. J Antimicrob Chemother 18Suppl E:79–92

    CAS  PubMed  Google Scholar 

  67. Hashimoto S, Honda M, Yamaguchi M, Sekimoto M, Tanaka Y (1997) Pharmacokinetics of imipenem and cilastatin during continuous venovenous hemodialysis in patients who are critically ill. Asaio J 43:84–88

    CAS  PubMed  Google Scholar 

  68. Fish DN, Teitelbaum I, Abraham E (2005) Pharmacokinetics and pharmacodynamics of imipenem during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother 49:2421–2428

    Article  CAS  PubMed  Google Scholar 

  69. Kuti JL, Nicolau DP (2005) Derivation of meropenem dosage in patients receiving continuous veno-venous hemofiltration based on pharmacodynamic target attainment. Chemotherapy 51:211–216

    Article  CAS  PubMed  Google Scholar 

  70. Mouton JW, Touzw DJ, Horrevorts AM, Vinks AA (2000) Comparative pharmacokinetics of the carbapenems: clinical implications. Clin Pharmacokinet 39:185–201

    Article  CAS  PubMed  Google Scholar 

  71. Norrby SR (2000) Neurotoxicity of carbapenem antibiotics: consequences for their use in bacterial meningitis. J Antimicrob Chemother 45:5–7

    Article  CAS  PubMed  Google Scholar 

  72. de la Pena A, Derendorf H (1999) Pharmacokinetic properties of beta-lactamase inhibitors. Int J Clin Pharmacol Ther 37:63–75

    PubMed  Google Scholar 

  73. van der Werf TS, Mulder PO, Zijlstra JG, Uges DR, Stegeman CA (1997) Pharmacokinetics of piperacillin and tazobactam in critically ill patients with renal failure, treated with continuous veno-venous hemofiltration (CVVH). Intensive Care Med 23:873–877

    Article  PubMed  Google Scholar 

  74. Lipman J, Wallis SC, Rickard CM, Fraenkel D (2001) Low cefpirome levels during twice daily dosing in critically ill septic patients: pharmacokinetic modelling calls for more frequent dosing. Intensive Care Med 27:363–370

    Article  CAS  PubMed  Google Scholar 

  75. Craig WA (2001) Does the dose matter? Clin Infect Dis 33Suppl 3:S233–237

    Article  CAS  PubMed  Google Scholar 

  76. Meyer B, Ahmed el Gendy S, Delle Karth G, Locker GJ, Heinz G, Jaeger W, Thalhammer F (2003) How to calculate clearance of highly protein-bound drugs during continuous venovenous hemofiltration demonstrated with flucloxacillin. Kidney Blood Press Res 26:135–140

    Article  CAS  PubMed  Google Scholar 

  77. Sowinski KM, Mueller BA, Grabe DW, Manley HJ, Frye RF, Bailie GR, Marx MA (2001) Cefazolin dialytic clearance by high-efficiency and high-flux hemodialyzers. Am J Kidney Dis 37:766–776

    Article  CAS  PubMed  Google Scholar 

  78. Davies SP, Lacey LF, Kox WJ, Brown EA (1991) Pharmacokinetics of cefuroxime and ceftazidime in patients with acute renal failure treated by continuous arteriovenous haemodialysis. Nephrol Dial Transplant 6:971–976

    CAS  PubMed  Google Scholar 

  79. Kroh UF, Lennartz H, Edwards DJ, Stoeckel K (1996) Pharmacokinetics of ceftriaxone in patients undergoing continuous veno-venous hemofiltration. J Clin Pharmacol 36:1114–1119

    CAS  PubMed  Google Scholar 

  80. Traunmuller F, Schenk P, Mittermeyer C, Thalhammer-Scherrer R, Ratheiser K, Thalhammer F (2002) Clearance of ceftazidime during continuous venovenous haemofiltration in critically ill patients. J Antimicrob Chemother 49:129–134

    Article  CAS  PubMed  Google Scholar 

  81. Van der Werf TS, Fijen JW, Van de Merbel NC, Spanjersberg R, Moller AV, Ligtenberg JJ, Tulleken JE, Zijlstra JG, Stegeman CA (1999) Pharmacokinetics of cefpirome in critically ill patients with renal failure treated by continuous veno-venous hemofiltration. Intensive Care Med 25:1427–1431

    Article  PubMed  Google Scholar 

  82. Malone RS, Fish DN, Abraham E, Teitelbaum I (2001) Pharmacokinetics of cefepime during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother 45:3148–3155

    Article  CAS  PubMed  Google Scholar 

  83. Valtonen M, Tiula E, Takkunen O, Backman JT, Neuvonen PJ (2001) Elimination of the piperacillin/tazobactam combination during continuous venovenous haemofiltration and haemodiafiltration in patients with acute renal failure. J Antimicrob Chemother 48:881–885

    Article  CAS  PubMed  Google Scholar 

  84. Hickling KG, Begg EJ, Perry RE, Atkinson HC, Sharman JR (1991) Serum aminoglycoside clearance is predicted as poorly by renal aminoglycoside clearance as by creatinine clearance in critically ill patients. Crit Care Med 19:1041–1047

    Article  CAS  PubMed  Google Scholar 

  85. Triginer C, Izquierdo I, Fernandez R, Rello J, Torrent J, Benito S, Net A (1990) Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med 16:303–306

    Article  CAS  PubMed  Google Scholar 

  86. Hansen M, Christrup LL, Jarlov JO, Kampmann JP, Bonde J (2001) Gentamicin dosing in critically ill patients. Acta Anaesthesiol Scand 45:734–740

    Article  CAS  PubMed  Google Scholar 

  87. Wallis SC, Mullany DV, Lipman J, Rickard CM, Daley PJ (2001) Pharmacokinetics of ciprofloxacin in ICU patients on continuous veno-venous haemodiafiltration. Intensive Care Med 27:665–672

    Article  CAS  PubMed  Google Scholar 

  88. Bellmann R, Egger P, Gritsch W, Bellmann-Weiler R, Joannidis M, Dunzendorfer S, Wiedermann CJ (2002) Elimination of levofloxacin in critically ill patients with renal failure: influence of continuous veno-venous hemofiltration. Int J Clin Pharmacol Ther 40:142–149

    CAS  PubMed  Google Scholar 

  89. Fuhrmann V, Schenk P, Jaeger W, Ahmed S, Thalhammer F (2004) Pharmacokinetics of moxifloxacin in patients undergoing continuous venovenous haemodiafiltration. J Antimicrob Chemother 54:780–784

    Article  CAS  PubMed  Google Scholar 

  90. Meyer B, Kornek GV, Nikfardjam M, Karth GD, Heinz G, Locker GJ, Jaeger W, Thalhammer F (2005) Multiple-dose pharmacokinetics of linezolid during continuous venovenous haemofiltration. J Antimicrob Chemother 56:172–179

    Article  CAS  PubMed  Google Scholar 

  91. DelDot ME, Lipman J, Tett SE (2004) Vancomycin pharmacokinetics in critically ill patients receiving continuous venovenous haemodiafiltration. Br J Clin Pharmacol 58:259–268

    Article  CAS  PubMed  Google Scholar 

  92. Thalhammer F, Rosenkranz AR, Burgmann H, Graninger W, Hollenstein U, Schenk P, Thalhammer-Scherrer R, Traindl O, Horl WH, Breyer S (1997) Single-dose pharmacokinetics of teicoplanin during hemodialysis therapy using high-flux polysulfone membranes. Wien Klin Wochenschr 109:362–365

    CAS  PubMed  Google Scholar 

  93. Lamp KC, Freeman CD, Klutman NE, Lacy MK (1999) Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin Pharmacokinet 36:353–373

    Article  CAS  PubMed  Google Scholar 

  94. Trotman RL, Williamson JC, Shoemaker DM, Salzer WL (2005) Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis 41:1159–1166

    Article  CAS  PubMed  Google Scholar 

  95. Muhl E, Martens T, Iven H, Rob P, Bruch HP (2000) Influence of continuous veno-venous haemodiafiltration and continuous veno-venous haemofiltration on the pharmacokinetics of fluconazole. Eur J Clin Pharmacol 56:671–678

    Article  CAS  PubMed  Google Scholar 

  96. Bagon JA (1999) Neuropsychiatric complications following quinolone overdose in renal failure. Nephrol Dial Transplant 14:1337

    Article  CAS  PubMed  Google Scholar 

  97. Izzedine H, Launay-Vacher V, Deray G (2005) Antiviral drug-induced nephrotoxicity. Am J Kidney Dis 45:804–817

    Article  CAS  PubMed  Google Scholar 

  98. Sennesael J, Verbeelen D, Lauwers S (1982) Ototoxicity associated with cephalexin in two patients with renal failure. Lancet 2:1154–1155

    Article  CAS  PubMed  Google Scholar 

  99. Duff P (1992) The aminoglycosides. Obstet Gynecol Clin North Am 19:511–517

    CAS  PubMed  Google Scholar 

  100. Snavely SR, Hodges GR (1984) The neurotoxicity of antibacterial agents. Ann Intern Med 101:92–104

    CAS  PubMed  Google Scholar 

  101. Kroboth PD, McNeil MA, Kreeger A, Dominguez J, Rault R (1983) Hearing loss and erythromycin pharmacokinetics in a patient receiving hemodialysis. Arch Intern Med 143:1263–1265

    Article  CAS  PubMed  Google Scholar 

  102. Huang KC, Heise A, Shrader AK, Tsueda K (1990) Vancomycin enhances the neuromuscular blockade of vecuronium. Anesth Analg 71:194–196

    Article  CAS  PubMed  Google Scholar 

  103. Schellie SF, Groshong T (1999) Acute interstitial nephritis following amoxicillin overdose. Mo Med 96:209–211

    CAS  PubMed  Google Scholar 

  104. Labriola L, Jadoul M, Daudons M, Pirson Y, Lambert M (2003) Massive amoxycillin crystalluria causing anuric acute renal failure. Clin Nephrol 59:455–457

    CAS  PubMed  Google Scholar 

  105. Longstreth KL, Robbins SD, Smavatkul C, Doe NS (2004) Cephalexin-induced acute tubular necrosis. Pharmacotherapy 24:808–811

    Article  PubMed  Google Scholar 

  106. Leong CL, Thiruventhiran T (2000) Cefuroxime-induced acute renal failure. Nephron 84:185

    Article  CAS  PubMed  Google Scholar 

  107. Khaliq Y, Zhanel GG (2003) Fluoroquinolone-associated tendinopathy: a critical review of the literature. Clin Infect Dis 36:1404–1410

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freebairn, R., Cohen, J., Lipman, J. (2007). Prescription of Antimicrobial Agents in Patients Undergoing Continuous Renal Replacement Therapy. In: Rello, J., Kollef, M., Díaz, E., Rodríguez, A. (eds) Infectious Diseases in Critical Care. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34406-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34406-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34405-6

  • Online ISBN: 978-3-540-34406-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics