Skip to main content
  • 8357 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12.6 Literaturverzeichnis

  1. J.M. Ziman. Prinzipien der Festkörpertheorie. Harri Deutsch, Frankfurt, 1975.

    Google Scholar 

  2. N.W. Ashcroft, N.D. Mermin. Solid State Physics. Holt-Saunders, New York, 1976.

    Google Scholar 

  3. O. Madelung. Introduction to Solid State Theory. Springer, Berlin, third edition, 1996

    Google Scholar 

  4. Ch. Kittel. Einführung in die Festkörperphysik. Oldenbourg, München, 2002.

    Google Scholar 

  5. C. Jacoboni, L. Reggiani. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys., 55(3):645–705, 1983.

    Article  Google Scholar 

  6. M. Lundstrom. Fundamentals of Carrier Transport (Modular Series on Solid State Devices, Volume X). Addison-Wesley, Reading, Massachusetts, 1990.

    Google Scholar 

  7. O. Madelung (Ed.). Semiconductors-Basic Data. Springer, Berlin, second edition, 1996.

    Google Scholar 

  8. K. Seeger. Semiconductor Physics. Springer, Berlin, third edition, 1985.

    Google Scholar 

  9. W.E. Beadle, J.C.C. Tsai, R.D. Plummer (Eds.). Quick Reference Manual for Silicon Integrated Circuit Technology. Wiley, New York, 1985.

    Google Scholar 

  10. M.A. Green. Intrinsic concentration, effective densities of states, and effective mass in silicon. J. Appl. Phys., 67(6):2944–2954, 1990.

    Article  Google Scholar 

  11. S.M. Sze. Physics of Semiconductor Devices. Wiley, New York, second edition, 1982.

    Google Scholar 

  12. R.P. Mertens, R.J. van Overstraeten, H.J. de Man. Heavy doping effects in silicon. Advances in Electronics and Electron Physics, 55:77–118, 1981.

    Google Scholar 

  13. R.J. van Overstraeten, R.P. Mertens. Heavy doping effects in silicon. Solid-State Electronics, 30(11):1077–1087, 1987.

    Article  Google Scholar 

  14. J.W. Slotboom, H.C. de Graaff. Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electronics, 19:857–862, 1976.

    Article  Google Scholar 

  15. D.B.M. Klaassen. A unified mobility model for device simulation — I. Model equations and concentration dependence. Solid-State Electronics, 35(7):953–959, 1992.

    Article  Google Scholar 

  16. D.B.M. Klaassen, J.W. Slotboom, H.C. de Graaff. Unified apparent bandgap narrowing in n-and p-type silicon. Solid-State Electronics, 35:125–129, 1992.

    Article  Google Scholar 

  17. T.N. Morgan. Broadening of impurity bands in heavily doped semiconductors. Phys. Rev., 139(1A):343–348, 1965.

    Article  Google Scholar 

  18. D.S. Lee, J.G. Fossum. Energy-band distortion in highly doped silicon. IEEE Trans. Electron Devices, 30(6):626–634, 1983.

    Google Scholar 

  19. E.O. Kane. Thomas-Fermi approach to impure semiconductor band structure. Phys. Rev., 131(1):79–88, 1963.

    Article  MATH  Google Scholar 

  20. C. Gerthsen, H.O. Kneser, H. Vogel. Physik. Springer, Berrlin, sechzehnte Auflage, 1989.

    Google Scholar 

  21. C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, A. Alberigi-Quaranta. Electron drift velocity in silicon. Phys. Rev. B, 12(4):2265–2284, 1975.

    Article  Google Scholar 

  22. W. von Münch. Elektrische und magnetische Eigenschaften der Materie. Teubner, Stuttgart, 1987.

    Google Scholar 

  23. P.Y. Yu, M. Cardona. Fundamentals of Semiconductors. Springer, Berlin, 1996.

    MATH  Google Scholar 

  24. F. Reif. Statistical and Thermal Physics. McGraw-Hill, Singapore, 1965.

    Google Scholar 

  25. R.N. Hall. Electron-hole recombination in germanium. Phys. Rev., 87:387, 1952.

    Article  Google Scholar 

  26. W. Shockley, W.T. Read. Statistics of the recombination of holes and electrons. Phys. Rev., 87:835–842, 1952.

    Article  MATH  Google Scholar 

  27. C.-T. Sah, R.N. Noyce, W. Shockley. Carrier generation and recombination in p-n junctions and p-n junction characteristics. Proc. IRE, 45:1228–1243, 1957.

    Google Scholar 

  28. C.-T. Sah, F.A. Lindholm. Carrier generation, recombination, trapping, and transport in semiconductors witch position-dependent composition. IEEE Trans. Electron Devices, 24(4):358–362, 1977.

    Google Scholar 

  29. M. Reisch. High-frequency Bipolar Transistors. Springer, Berlin 2003

    Google Scholar 

  30. A.G. Chynoweth. Charge Multiplication Phenomena, in’ semiconductors and Semimetals’, Vol.4 (R.K. Willardson and A.C. Beer Eds.). Academic Press, New York, 1968.

    Google Scholar 

  31. S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer, Wien, 1984.

    Google Scholar 

  32. W. Shockley. Problems related to p-n junctions in silicon. Solid-State Electronics, 2(1):35–67, 1961.

    Article  Google Scholar 

  33. J.J. Moll, N.I. Meyer. Secondary multiplication in silicon. Solid-State Electronics, 3:155–158, 1961.

    Article  Google Scholar 

  34. E.F. Crabbe, J.M.C. Stork, G. Baccarani, M.v. Fischetti, S.E. Laux. The impact of non-equilibrium transport on breakdown and transit time in bipolar transistors. IEDM Tech. Dig., 1990:463–466, 1990.

    Google Scholar 

  35. J.W. Slotboom, G. Streutker, A. Pruijmboom, D.J. Gravesteijn. Parasitic energy barriers in SiGe HBTs. IEEE Electron Device Letters, 12(9):486–488, 1991.

    Article  Google Scholar 

  36. W. Lee et.al. Numerical modeling of advanced semiconductor devices. IBM J. Research and Development, 36(2):208–230, 1992.

    Article  Google Scholar 

  37. P. Palestri, L. Selmi, G.A.M. Hurkx, J.W. Slotboom, E. Sangiorgi. Energy dependent electron and hole impact ionization in Si bipolar transistors. IEDM Tech. Dig., 1998:885–888, 1998.

    Google Scholar 

  38. J. Dziewior, W. Schmid. Auger coefficients for highly-doped and highly excited silicon. Appl. Phys. Lett., 31(5):346–348, 1977.

    Article  Google Scholar 

  39. A.W. Wieder. Emitter effects in shallow bipolar devices: measurements and consequences. IEEE Trans. Electron Devices, 27(8):1402–1408, 1980.

    Google Scholar 

  40. H.C. de Graaff, F.M. Klaassen. Compact Transistor Modeling for Circuit Design. Springer, Wien, 1990.

    Google Scholar 

  41. M. Kurata. Numerical Analysis for Semiconductor Devices. Lexington Books, D.C. Heath Co., Lexington, 1982.

    Google Scholar 

  42. C. Jacoboni, P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation. Springer, Wien, 1989.

    Google Scholar 

  43. M.V. Fischetti, S.E. Laux. Phys. Rev., 38(14):9721–9745, 1988.

    Article  Google Scholar 

  44. G.D. Masetti, M. Severi, S. Solmi. Modeling of carrier mobility against concentration in arsenic-, phosphorous-and boron-doped silicon. IEEE Trans. Electron Devices, 30:764–769, 1983.

    Google Scholar 

  45. D.B.M. Klaassen. A unified mobility model for device simulation-II. Temperature dependence of carrier mobility and lifetime. Solid-State Electronics, 35(7):961–967, 1992.

    Article  Google Scholar 

  46. D.M. Caughey, R.E. Thomas. Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE, 55(12):2192–2193, 1967.

    Article  Google Scholar 

  47. S.M. Sze (Ed.). High-Speed Semiconductor Devices. Wiley, New York, 1990.

    Google Scholar 

  48. J.R. Haynes, W. Shockley. The mobility and life of injected holes and electrons in germanium. Phys. Rev., 81:835, 1951.

    Article  Google Scholar 

  49. J.D. Jackson. Classical Electrodynamics. Wiley, New York, second edition, 1975.

    MATH  Google Scholar 

  50. J.E. Parrot. Thermodynamic theory of transport processes in semiconductors. IEEE Trans. Electron Devices, 43(5):809–826, 1996.

    Article  Google Scholar 

  51. G.K. Wachutka. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. CAD, 9(11):1141–1149, 1990.

    Google Scholar 

  52. H. Baltes, R. Castagnetti. Magnetic Sensors in Semiconductor Sensors (S.M. Sze Ed.). J.Wiley, New York, 1994.

    Google Scholar 

  53. M.v. Ardenne, G. Musiol, S. Reball (Hrsg.). Effekte der Physik und ihre Anwendungen. Harri Deutsch, Frankfurt, 1988.

    Google Scholar 

  54. J.C. Bean. Silicon-based semicondcutor heterostructures: Column IV bandgap engineering. Proc. IEEE, 80(4):571–587, 1992.

    Article  Google Scholar 

  55. S.S. Iyer, G.L. Patton, J.M.C. Stork, B.S. Meyerson, D.L. Harame. Heterojunction bipolar transistors using Si-Ge alloys. IEEE Trans. Electron Devices, 36(10):2043–2064, 1989.

    Article  Google Scholar 

  56. R. People. Physics and applications of GexSi1−x /Si strained-layer heterostructures. IEEE J. Quantum Electronics, 22(9):1696–1710, 1986.

    Article  Google Scholar 

  57. H. Morkoc, B. Sverdlov, G.-B. Gao. Strained layer heterostructures, and their applications to MODFET’s, HBT’s and lasers. Proc. IEEE, 81(4):493–556, 1993.

    Article  Google Scholar 

  58. R. People. Indirect bandgap of coherently strained GexSi1−x bulk alloys on 〈001〉 silicon substrates. Phys. Rev. B, 32(2):1405–1408, 1985.

    Article  Google Scholar 

  59. C.H. Gan, J.A. del Alamo, B.R. Bennett, B.S. Meyerson, E.F. Crabbe, C.G. Sodini, L.R. Reif. Si1−x Gex/Si valence band discontinuity measurements using a semiconductor-insulator-semiconductor (SIS) heterostructure. IEEE Trans. Electron Devices, 41(12):2430–2439, 1994.

    Article  Google Scholar 

  60. S.-I. Takagi, J.L. Hoyt, K. Rim, J.J. Welser, J.F. Gibbons. Evaluation of the valence band discontinuity of Si/Si1−x Gex/Si heterostrucures by application of admittance spectroscopy to MOS capacitors. IEEE Trans. Electron Devices, 45(2):494–501, 1998.

    Article  Google Scholar 

  61. T. Manku, A. Nathan. Electron drift mobility for devices based on unstrained and coherently strained Si1−x Gex grown on (001) silicon substrate. IEEE Trans. Electron Devices, 39(9):2082–2089, 1992.

    Article  Google Scholar 

  62. A.R. Powell, L.B. Rowland. SiC materials-progress, status, and potential roadblocks. Proc. IEEE, 90(6):942–955, 2002.

    Article  Google Scholar 

  63. W.v. Münch. Einführung in die Halbleitertechnologie. Teubner, Stuttgart, 1993.

    Google Scholar 

  64. W. Kowalsky. Dielektrische Werkstoffe der Elektronik und Photonik. Teubner, Stuttgart, 1993.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Halbleiter. In: Elektronische Bauelemente. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34015-7_12

Download citation

Publish with us

Policies and ethics