Skip to main content

Artificial Vision

  • Chapter
Medical Retina

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 976 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alteheld N, Rossler G, Vobig M, Walter P (2004) The retina implant—a new approach to a visual prosthesis. Biomed Tech 49(4):99–103

    Article  CAS  Google Scholar 

  2. Brelen ME, DePotter P, Gersdorff M, Cosnard G, Veraart C, Delbeke J (2006) Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis. Case report. J Neurosurg 104(4):593–597

    PubMed  Google Scholar 

  3. Brindley GS (1970) Sensations produced by electrical stimulation of the occipital poles of the cerebral hemispheres, and their use in constructing visual prostheses. Ann R Coll Surg Engl 47(2):106–108

    PubMed  CAS  Google Scholar 

  4. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    PubMed  CAS  Google Scholar 

  5. Buffoni LX, Coulombe J, Sawan M (2005) Image processing strategies dedicated to visual cortical stimulators: a survey. Artif Organs 29(8):658–664

    Article  PubMed  Google Scholar 

  6. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225(1):13–16

    Article  PubMed  CAS  Google Scholar 

  7. Chow AY, Pardue MT, Chow VY, Peyman GA, Liang C, Perlman JI, Peachey NS (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 9(1):86–95

    Article  PubMed  CAS  Google Scholar 

  8. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122(4):460–469

    Article  PubMed  Google Scholar 

  9. Chowdhury V, Morley JW, Coroneo MT (2005) Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex. J Clin Neurosci 12(5):574–579

    Article  PubMed  Google Scholar 

  10. Dagnelie G (2006) Visual prosthetics 2006: assessment and expectations. Expert Rev Med Devices 3(3):315–325

    Article  PubMed  Google Scholar 

  11. Dagnelie G, Barnett D, Humayun MS, Thompson RW Jr (2006) Paragraph text reading using a pixelized prosthetic vision simulator: parameter dependence and task learning in free viewing conditions. Invest Ophthalmol Vis Sci 47(3):1241–1250

    Article  PubMed  Google Scholar 

  12. Dawson WW, Radtke ND (1977) The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci 16(3):249–252

    PubMed  CAS  Google Scholar 

  13. Delbeke J, Oozeer M, Veraart C (2003) Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res 43(9):1091–1102

    Article  PubMed  Google Scholar 

  14. Dobelle WH (1994) Artificial vision for the blind. The summit may be closer than you think. ASAIO J 40(4):919–922

    Article  PubMed  CAS  Google Scholar 

  15. Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46(1):3–9

    Article  PubMed  CAS  Google Scholar 

  16. Duret F, Brelen ME, Lambert V, Gerard B, Delbeke J, Veraart C (2006) Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor Neurol Neurosci 24(1):31–40

    PubMed  Google Scholar 

  17. Eckhorn R, Wilms M, Schanze T, Eger M, Hesse L, Eysel UT, Kisvarday ZF, Zrenner E, Gekeler F, Schwahn H, Shinoda K, Sachs H, Walter P (2006) Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vision Res 46(17):2675–2690

    Article  PubMed  Google Scholar 

  18. Eckmiller R (1995) Towards retina implants for improvement of vision in human with RP—challenges and first results. Proc WCNN, vol 1. INNS Press/Erlbaum, Hillsdale, pp 228–233

    Google Scholar 

  19. Eckmiller R (1996) Retina implants with adaptive retina encoders. RESNA Research Symposium, pp 21–24

    Google Scholar 

  20. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29(5):281–289

    PubMed  CAS  Google Scholar 

  21. Eckmiller R, Neumann D, Baruth O (2005) Tunable retina encoders for retina implants: why and how. J Neural Eng 2(1):S91–S104

    Article  PubMed  Google Scholar 

  22. Fernandez E, Pelayo F, Romero S, Bongard M, Marin C, Alfaro A, Merabet L (2005) Development of a cortical visual neuroprothesis for the blind: the relevance of neuroplasticity. J Neural Eng 2(2):R1–R12

    Article  PubMed  CAS  Google Scholar 

  23. Fried SI, Hsueh HA, Werblin FS (2006) A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol 95(2):970–978

    Article  PubMed  CAS  Google Scholar 

  24. Gekeler F, Szurman P, Grisanti S, Weiler U, Claus R, Greiner TO, Volker M, Kohler K, Zrenner E, Bartz-Schmidt KU (2006) Compound subretinal prostheses with extraocular parts designed for human trials: successful long term implantation in pigs. Graefes Arch Clin Exp Ophthalmol (published online doi: 10.1007/s00417-006-0339-x)

    Google Scholar 

  25. Hornig R, Velikay-Parel M, Feucht M, Zehnder T, Richard G (2006) Early clinical experience with a chronic retinal implant system for artificial vision. Invest Ophthalmol Vis Sci 47:E-Abstract 3216

    Google Scholar 

  26. House PA, MacDonald JD, Tresco PA, Normann RA (2006) Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations. Neurosurg Focus 20(5):E4

    PubMed  Google Scholar 

  27. Humayun MS, de Juan E, Dagnelie G, Greenberg RJ, Probst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind subjects. Arch Ophthalmol 114:40–46

    PubMed  CAS  Google Scholar 

  28. Jones BW, Marc RE (2005) Retinal remodelling during retinal degeneration. Exp Eye Res 81(2):123–137

    Article  PubMed  CAS  Google Scholar 

  29. Kanda H, Morimoto T, Fujikado T, Tano Y (2006) Localized phosphene elicited by transscleral electrical stimulation in normal subjects. Invest Ophthalmol Vis Sci 47: E-Abstract 3201

    Google Scholar 

  30. Mahadevappa M, Weiland JD, Yanai D, Fine I, Greenberg RJ, Humayun MS (2005) Perceptual thresholds and electrode impedance in three retinal prosthesis subjects. IEEE Trans Neural Syst Rehabil Eng 13(2):201–206

    Article  PubMed  Google Scholar 

  31. Marc RE, Jones BW (2003) Retinal remodelling in inherited photoreceptor degeneration. Mol Neurobiol 28(2):139–147

    Article  PubMed  CAS  Google Scholar 

  32. Maynard EM, Fernandez E, Normann RA (2000) A technique to prevent dural adhesions to chronically implanted microelectrode arrays. J Neurosci Methods 97(2):93–101

    Article  PubMed  CAS  Google Scholar 

  33. Nakauchi K, Fujikado T, Kanda H, Morimoto T, Choi JS, Ikuno Y, Sakaguchi H, Kamei M, Ohji M, Yagi T, Nishimura S, Sawai H, Fukuda Y, Tano Y (2005) Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 243(2):169–174

    Article  PubMed  Google Scholar 

  34. Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39(15):2577–2587

    Article  PubMed  CAS  Google Scholar 

  35. Pardue MT, Phillips MJ, Yin H, Fernandes A, Cheng Y, Chow AY, Ball SL (2005) Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng 2(1):S39–S47

    Article  PubMed  Google Scholar 

  36. Pardue MT, Phillips MJ, Yin H, Sippy BD, Webb-Wood S, Chow AY, Ball SL (2005) Neuroprotective effects of subretinal implants in the RCS rat. Invest Ophthalmol Vis Sci 46(2):674–682

    Article  PubMed  Google Scholar 

  37. Peyman G, Chow AY, Liang C, Chow VY, Perlman JI, Peachey NS (1998) Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers 29:234–241

    PubMed  CAS  Google Scholar 

  38. Rizzo JF III, Wyatt J, Humayun M, de Juan E, Liu W, Chow A, Eckmiller R, Zrenner E, Yagi T, Abrams G (2001) Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 108(1):13–14

    Article  PubMed  Google Scholar 

  39. Rizzo JF III, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44(12):5355–5361

    Article  PubMed  Google Scholar 

  40. Santos A, Humayun MS, deJuan E Jr, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. Arch Ophthalmol 115(4):511–515

    PubMed  CAS  Google Scholar 

  41. Schanze T, Wilms M, Eger M, Hesse L, Eckhorn R (2002) Activation zones in cat visual cortex evoked by electrical retina stimulation. Graefes Arch Clin Exp Ophthalmol 240(11):947–954

    PubMed  Google Scholar 

  42. Schanze T, Greve N, Hesse L (2003) Towards the cortical representation of form and motion stimuli generated by a retina implant. Graefes Arch Clin Exp Ophthalmol 241(8):685–693

    Article  PubMed  Google Scholar 

  43. Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, Jakob W, Gabel VP, Zrenner E (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol 239(12):961–967

    PubMed  CAS  Google Scholar 

  44. Segond H, Weiss D, Sampaio E (2005) Human spatial navigation via a visuo-tactile sensory substitution system. Perception 34(10):1231–1249

    Article  PubMed  Google Scholar 

  45. Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ (2006) Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J Neurophysiol 95(6):3311–3327

    Article  PubMed  Google Scholar 

  46. Shah HA, Montezuma SR, Rizzo JF III (2006) In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation. Exp Eye Res 83(2):247–254

    Article  PubMed  CAS  Google Scholar 

  47. Stone JL, Barlow WE, Humayun MS, deJuan E Jr, Milam AH (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with Retinitis pigmentosa. Arch Ophthalmol 110(11):1634–1639

    PubMed  CAS  Google Scholar 

  48. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813(1):181–186

    Article  PubMed  CAS  Google Scholar 

  49. Walter P, Mokwa W (2005) Epiretinal visual prostheses. Ophthalmologe 102(10):933–940

    Article  PubMed  CAS  Google Scholar 

  50. Walter P, Kisvarday ZF, Gortz M, Altheld N, Rossler G, Stieglitz T, Eysel UT (2005) Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 46(5):1780–1785

    Article  PubMed  Google Scholar 

  51. Warren DJ, Normann RA (2005) Functional reorganization of primary visual cortex induced by electrical stimulation in the cat. Vision Res 45(5):551–565

    Article  PubMed  Google Scholar 

  52. Warren DJ, Fernandez E, Normann RA (2001) High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience 105(1):19–31

    Article  PubMed  CAS  Google Scholar 

  53. Wilke R, Kuttenkeuler C, Wilhelm B, Sailer H, Sachs H, Gabel VP, Besch D, Bartz-Schmidt KU, Zrenner E (2006) Subretinal chronic multielectrode arrays in blind patients: perception of dots and patterns. Invest Ophthalmol Vis Sci 47: E-Abstract 3202

    Google Scholar 

  54. Wolff JG, Delacour J, Carpenter RH, Brindley GS (1968) The patterns seen when alternating electric current is passed through the eye. Q J Exp Psychol 20(1):1–10

    PubMed  CAS  Google Scholar 

  55. Zrenner E, Miliczek KD, Gabel VP, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29(5):269–280

    Article  PubMed  CAS  Google Scholar 

  56. Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 39(15):2555–2567

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, P. (2007). Artificial Vision. In: Holz, F.G., Spaide, R.F. (eds) Medical Retina. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33672-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33672-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33671-6

  • Online ISBN: 978-3-540-33672-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics