Skip to main content

Abstract

Rooted in mechanical, electrical, and chemical engineering and relying on physical insight, biological techniques, and materials science know-how, microelectromechanical systems (MEMS) engineering is a fundamentally interdisciplinary field. Its fascinating diversity often forces the research and development engineer to take into account a broader range of issues than in many classical, well-established technical disciplines. Simultaneously, the diversity creates the impression of a lack of unity, contrasting strongly with the classical disciplines of science and engineering. These are usually able to offer a core of thoughts stripped of unnecessary details, with well-established foundations and lines of thought, and representations accepted by the majority of researchers active in the field. More peripheral aspects of the disciplines can be built up from a solid basis of knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Fluitman, “Microsystems Technology: Objectives,” Sensors and Actua tors, A56(1–2):151–166 (1996)

    Article  Google Scholar 

  2. W. Ko, “The Future of Sensor and Actuator Systems,” Sensors and Actua tors, A56(1–2):193–197 (1996)

    Article  Google Scholar 

  3. Sensors, vols. 1–9 (W. Göpel et al, eds.), Wiley VCH (1989–1995); Sensor Update, vols. 1–13 (H. Baltes et al, eds.), Wiley VCH (1996–2004)

    Google Scholar 

  4. J. Fraden, Handbook of Modern Sensors — Physics, Designs, and Applica tions, 3rd ed., Springer (2003)

    Google Scholar 

  5. J. G. Webster, The Measurement, Instrumentation and Sensors Handbook, CRC Press (1998)

    Google Scholar 

  6. S. Middelhoek and S. A. Audet, Silicon Sensors, Delft University Press (1994)

    Google Scholar 

  7. A. Zeilinger, “Bell’s Theorem, Information and Quantum Physics,” in Quantum [Un]Speakables. From Bell’s Theorem to Quantum Information (R. Bertlmann and A. Zeilinger, eds.), Springer (2002), pp. 241–254

    Google Scholar 

  8. A. Zeilinger, “Quantum Entangled Bits Step Closer to Information Technology,” Science, 289:405–406 (2000)

    Article  Google Scholar 

  9. G. Stix, “Best-Kept Secrets,” Sei. Am., 292(1):64–69 (2005)

    Google Scholar 

  10. S. M. Sze, “Classification and Terminology of Sensors,” in Semiconductor Sensors (S. M. Sze, ed.), John Wiley & Sons, NY (1994)

    Google Scholar 

  11. C. Y Chang and S. M. Sze, ULSI Technology, McGraw Hill (1996)

    Google Scholar 

  12. S. Sze, Physics of Semiconductor Devices, Wiley Interscience Publications (1981)

    Google Scholar 

  13. Y Tsividis, Operation and Modelling of the MOS Transistor, 2nd ed., Oxford University Press (2003)

    Google Scholar 

  14. P R. Gray, P J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed., John Wiley & Sons (2001)

    Google Scholar 

  15. S. Middelhoek and D. J. W. Noorlag, “Three-Dimensional Representation of Input and Output Transducers,” Sensors and Actuators, 2(1):29–41 (1981)

    Article  Google Scholar 

  16. R. J. van de Plassche, J. H. Huijsing, and W. M. C. Sansen, Analog Circuit Design: RF Analog-to-Digital Converters; Sensor and Actuator Interfaces; Low-Noise Oscillators, PLLs and Synthesizers, Springer (1997)

    Google Scholar 

  17. D. Jaeggi, J. Funk, A. Haberli, and H. Baltes, “Overall System Analysis of a CMOS Thermal Converter,” Digest of Technical Papers, 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Stockholm, Sweden, vol. 2 (1995), pp. 112–115

    Google Scholar 

  18. T. W. Kenny, W. J. Kaiser, S. B. Waltman, and J. K. Reynolds, “Novel Infrared Detector Based on a Tunneling Displacement Transducer,” Appl. Phys. Lett., 59(19): 1820–1822 (1991)

    Article  Google Scholar 

  19. B. Kloeck and N. F. de Rooij, “Mechanical Sensors,” in Semiconductor Sen sors (S. M. Sze, ed.), John Wiley & Sons, NY (1994)

    Google Scholar 

  20. S. Middelhoek and A. Hoogerwerft, “Classifying Solid-State Sensors — The Sensor Effect Cube,” Sensors and Actuators, 10:1–8 (1986)

    Article  Google Scholar 

  21. W. M. Deen, Analysis of Transport Phenomena, Oxford University Press (1998)

    Google Scholar 

  22. R. K. Pathria, Statistical Mechanics, Butterworth-Heinemann (1996), chap. 14

    Google Scholar 

  23. R. Kubo, “Fluctuation-dissipation theorem,” Rep. Prog. Phys., 29:255–284 (1966)

    Article  Google Scholar 

  24. Q. Huang and C. Menolfi, “A 200 nV Offset 6.5 nV/square root Hz Noise PSD 5.6 kHz Chopper Instrumentation Amplifier in 1 mu m Digital CMOS,” Digest of Technical Papers, IEEE International Solid-State Circuits Conference ISSCC 2001, IEEE (2001), pp. 362–363

    Google Scholar 

  25. S. D. Senturia, Microsystem Design, Kluwer Academic Publishers (2001), sect. 16.5

    Google Scholar 

  26. R. K. Pathria, Statistical Mechanics, Butterworth-Heinemann (1996), chap. 3

    Google Scholar 

  27. S. van Herwaarden and G. C. M. Meijer, “Thermal Sensors,” in Semiconductor Sensors (S. M. Sze, ed.), John Wiley & Sons, NY (1994)

    Google Scholar 

  28. B. E. Cole, R. E. Higashi, and R. A. Wood, “Monolithic Two-Dimensional Arrays of Micromachined Microstructures for Infrared Applications,” Proc. IEEE, 86(8): 1679–1686 (1998)

    Article  Google Scholar 

  29. J. D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons (1998)

    Google Scholar 

  30. S. Sze, Physics of Semiconductor Devices, Wiley Interscience Publications (1981), chap. 13

    Google Scholar 

  31. A. Häberli, “Compensation and Calibration in IC Microsensors,” Ph.D. dissertation, ETH Zurich, no. 12090 (1997)

    Google Scholar 

  32. G. C. M. Meijer and A. W. van Herwaarden, Thermal Sensors, Institute of Physics Publishing, Bristol (1994)

    Google Scholar 

  33. S. D. Kolev, M. Adam, I. Barsony, C. Cobianu, and A. van den Berg, “Thermal Properties of a Silicon Based Micro-Pellistor with Suspended Bridge Structure,” Proceedings of the 12th European Conference on Solid-State Transducers (Eurosensors XII), vol. 1 (1998), pp. 273–276

    Google Scholar 

  34. D. Moser and H. Baltes, “A High Sensitivity CMOS Gas Flow Sensor on a Thin Dielectric Membrane,” Sensors and Actuators, A37–38:33–37 (1993)

    Google Scholar 

  35. O. Paul, J. Robadey, and H. Baltes, “Two-Dimensional Integrated Gas Flow Sensors by CMOS IC Technology,” J. Micromech. Microeng., 8:243–250 (1995)

    Google Scholar 

  36. F. Mayer, A. Häberli, G. Ofner, H. Jacobs, O. Paul, and H. Baltes, “Single-Chip CMOS Anemometer,” Tech. Digest Intl. Electron Devices Meeting IEDM’ 97, Washington DC, IEEE (1997), pp. 895–898

    Google Scholar 

  37. A. Häberli, O. Paul, P. Malcovati, M. Faccio, F. Maloberti, and H. Baltes, “CMOS Integration of a Thermal Pressure Sensor System,” Proc. ISCAS 96, Atlanta, vol. 1, IEEE (1996), pp. 377–380

    Google Scholar 

  38. R. Lenggenhager, D. Jaeggi, P. Malcovati, H. Duran, H. Baltes, and E. Doering, “CMOS Membrane Infrared Sensors and Improved TMAHW Etchant,” Tech. Digest Intl. Electron Devices Meeting IEDM 1994, IEEE (1994), pp. 531–534

    Google Scholar 

  39. R. G. Johnson and R. E. Higashi, “A Highly Sensitive Chip Microtransducer for Air Flow and Differential Pressure Sensing Applications,” Sensors and Actuators, 11:63–72 (1987)

    Article  MATH  Google Scholar 

  40. R. Steiner, M. Schneider, F. Mayer, U. Munch, T. Mayer, and H. Baltes, “Fully Packaged CMOS Current Monitor Using Lead-On-Chip Technology,” Proc. MEMS 1998 Workshop (1998), pp. 603-608

    Google Scholar 

  41. A. Steinke, H.-G. Ortlepp, G. Brokmann, and B. March, “Intelligent Hybrid Sensors,” Proc. NORTECH 2000, Bergen, Norway (2000)

    Google Scholar 

  42. R. Sunier, Y. Li, K.-U. Kirstein, T. Vancura, H. Baltes, and O. Brand, “Resonant Magnetic Field Sensor with Frequency Output,” Tech. Digest IEEE MEMS 2005 Conference, Miami Beach, Jan. 2005, IEEE (2005), pp. 339–342

    Google Scholar 

  43. S. Kawahito, A. Cerman, K. Aramaki, and Y. Tadokoro, “A Weak Magnetic Field Measurement System Using Micro-Fluxgate Sensors and Delta-Sigma Interface,” IEEE Trans, lustrum. Meas., 52(1): 103–110 (2003)

    Article  Google Scholar 

  44. M. Graf, S. Taschini, P. Käser, C. Hagleitner, A. Hierlemann, and H. Baltes, “Digital MOS-Transistor-Based Microhotplate Array for Simultaneous Detection of Environmentally Relevant Gases,” Tech. Digest IEEE MEMS 2004 Conference, Maastricht, Jan. 2004, IEEE (2004), pp. 351–354

    Google Scholar 

  45. H. H. Sample, W. J. Bruno, S. B. Sample, and E. K. Sichel, “Reverse-Field Reciprocity for Conducting Specimens in Magnetic Fields,” Appl. Phys., 61(3): 1079–1084 (1987)

    Article  Google Scholar 

  46. L. Onsager, Phys. Rev., 37:405 (1931); Phys. Rev., 38:2265 (1931)

    Article  MATH  Google Scholar 

  47. J. Bartholomeyczik, P. Rüther, and O. Paul, “Multidimensional CMOS In-Plane Stress Sensor,” IEEE Sensors J. (2005), in press

    Google Scholar 

  48. A. A. Bellekom and P. J. A. Munter, “Offset Reduction in Spinning-Current Hall Plates,” Sensors and Materials, 5(5):253–263 (1994)

    Google Scholar 

  49. R. Steiner, “Rotary Switch and Current Monitor by Hall-Based Microsystems,” Ph.D. dissertation, ETH Zurich, no. 13135 (1999)

    Google Scholar 

  50. M. Doelle, P. Rüther, and O. Paul, “Novel Highly Miniaturized Multi-Stress Sensor Based on Eight-Terminal Field Effect Transistor,” Digest of Tech. Papers, 13th Intl. Conference on Solid-State Sensors and Actuators (Transducers 2005), Seoul, June 4–8 (2005), in press

    Google Scholar 

  51. R. Steiner, C. Maier, A. Häberli, F.-P. Steiner, and H. Baltes, “Offset Reduction in Hall Devices by Continuous Spinning Current Method,” Sensors and Actuators, A66:167–172 (1998)

    Article  Google Scholar 

  52. J. Bartholomeyczik, S. Kibbel, P. Rüther, and O. Paul, “Extraction of Compensated σxx−σyy and σxy Stresses from a Single Four-Contact Sensor Using the Spinning Transverse Voltage Method,” Tech. Digest IEEE MEMS 2005 Conference, Miami Beach, Jan. 2005, IEEE (2005), pp. 263–266

    Google Scholar 

  53. O. Bajdechi, “Systematic Design of Sigma-Delta Analog-To-Digital Converters,” Ph.D. dissertation, Technical University of Delft (2003)

    Google Scholar 

  54. F. Arai and T. Fukuda, “Energy Source and Power Supply Method,” in Micromechanical Systems — Principles and Technology (T. Fukuda and W. Menz, eds.), Elsevier (1998)

    Google Scholar 

  55. B. Warneke, B. Atwood, and K. S. J. Pister, “tSmart Dust Mote Forerunners,” Tech. Digest IEEE MEMS 2001 Conference, Interlaken, Jan. 2001, IEEE (2001), pp. 357–360

    Google Scholar 

  56. J. B. Bates, “Rechargeable Solid State Lithium Microbatteries,” Proc. Micro Electro Mechanical Systems Workshop, Fort Lauderdale, Feh. 1993 (1993), pp. 82–86

    Google Scholar 

  57. M. Müller, C. Müller, W. Menz, and C. Hebling, “Fuel Cell Using Micro-Structured Flow Fields,” Proc. Micro Syst. Technol. Conf, Düsseldorf (2001)

    Google Scholar 

  58. E. Sakaue, “Micromachining/Nanotechnology in Direct Methanol Fuel Cells,” Tech. Digest, IEEE MEMS 2005 Conference, Miami Beach, Jan. 2005, IEEE (2005), pp. 263–266

    Google Scholar 

  59. M. Müller, “Polymermembran-Brennstoffzellen mit mikrostrukturierten Strömungskanälen,” Ph.D. dissertation, IMTEK, University of Freiburg (2002)

    Google Scholar 

  60. S. Glunz, Fraunhofer Institute for Solar Energy Systems, private communication

    Google Scholar 

  61. Klaus Finkenzeller, RFID-Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd ed., Wiley & Sons (2003)

    Google Scholar 

  62. T. Genda, S. Tanaka, and M. Esashi, “Micro-Patterned Electret for High-Power Electrostatic Motor,” Tech. Digest, IEEE MEMS 2004 Conference, Maastricht, Jan. 2004, IEEE (2004), pp. 470–473

    Google Scholar 

  63. J. S. Boland, J. D. M. Messenger, H. W. Lo, and Y. C. Tai, “Arrayed Liquid Rotor Electret Power Generator System,” Tech. Digest IEEE MEMS 2005 Conference, Miami Beach, Jan. 2005, IEEE (2005), pp. 618–621

    Google Scholar 

  64. M. Strasser, R. Aigner, M. Franosch, and G. Wachutka, “Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining,” Digest of Tech. Papers, 11th Intl. Conference on Solid-State Sensors and Actuators (Transducers 2001), Munich, June 2001 (2001), pp. 26–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

Paul, O. (2006). Microtransducer Operation. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics