Skip to main content

Angiopoietin-2 Antagonists for Anti-Angiogenic Therapy

  • Chapter
Tumor Angiogenesis

Abstract

Interactions between Tie2, an endothelial cell-specific receptor tyrosine kinase, and its ligands the angiopoietins have been shown to play critical roles in multiple steps of angiogenesis and vascular remodeling. These include the stabilization of immature vessels, the destabilization of mature vessels, and endothelial cell migration and survival. Angiopoietin 1 has been shown to be a Tie2 agonist, stimulating autophosphorylation and the activation of downstream signaling pathways responsible for the maturation and stabilization of the developing vasculature. In contrast, angiopoietin 2 is largely thought to function as a contextdependent antagonist of Tie2 signaling, inducing vascular plasticity and sensitivity to pro-angiogenic factors such as VEGF-A. Furthermore, Ang2 exhibits broad expression in the vasculature of human tumors but limited expression in normal tissues, suggesting it could be an attractive target for safe and effective anti-angiogenic therapy. Potent and specific antibodies and peptideFc fusion proteins neutralizing the interaction between Ang2 and Tie2 have now been developed. In a variety of nonclinical studies in rodents, treatment with these agents resulted in an inhibition of the growth of human tumor xenografts and an inhibition of VEGF-stimulated corneal angiogenesis. In addition, mechanism of action studies suggest that Ang2 antagonists achieve efficacy by targeting the tumor vasculature. Data in support of the clinical utility of Ang2 inhibition in the oncology setting is currently being collected, with AMG 386, an Ang2 inhibitor, having been advanced into phase I oncology clinical trials in patients with solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad SA, Liu W, Jung YD, Fan F, Wilson M, Reinmuth N, Shaheen RM, Bucana CD, Ellis LM (2001) The effects of angiopoietin-1 and-2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 61:1255–1259

    PubMed  CAS  Google Scholar 

  • Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953

    Article  PubMed  CAS  Google Scholar 

  • Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-l signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233–240

    PubMed  CAS  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  • Das A, Fanslow W, Cerretti D, Warren E, Talarico N, McGuire P (2003) Angiopoietin/Tek interactions regulate mmp-9 expression and retinal neovascularization. Lab Invest 83:1637–1645

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909

    Article  PubMed  CAS  Google Scholar 

  • Eklund L, Olsen BR (2005) Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312:630–641

    Article  PubMed  CAS  Google Scholar 

  • Etoh T, Inoue H, Tanaka S, Barnard GF, Kitano S, Mori M (2001) Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 61:2145–2153

    PubMed  CAS  Google Scholar 

  • Fathers KE, Stone CM, Minhas K, Marriott JJ, Greenwood JD, Dumont DJ, Coomber BL (2005) Heterogeneity of Tie2 expression in tumor microcirculation: influence of cancer type, implantation site, and response to therapy. Am J Pathol 167:1753–1762

    PubMed  CAS  Google Scholar 

  • Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69[Suppl 3]:11–16

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333:328–335

    Article  PubMed  CAS  Google Scholar 

  • Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239

    Article  PubMed  CAS  Google Scholar 

  • Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 3:411–423

    Article  PubMed  CAS  Google Scholar 

  • Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628

    Article  PubMed  CAS  Google Scholar 

  • Hangai M, Moon YS, Kitaya N, Chan CK, Wu DY, Peters KG, Ryan SJ, Hinton DR (2001) Systemically expressed soluble Tie2 inhibits intraocular neovascularization. Hum Gene Ther 12:1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Turck CW, Rao P, Peters KG (1995) GRB2 and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene 11:2097–2103

    PubMed  CAS  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3:24–40

    Article  PubMed  CAS  Google Scholar 

  • Jones N, Dumont DJ (1998) The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R. Oncogene 17:1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 19:4549–4552

    Article  PubMed  CAS  Google Scholar 

  • Kontos CD, Stauffer TP, Yang WP, York JD, Huang L, Blanar MA, Meyer T, Peters KG (1998) Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 18:4131–4140

    Google Scholar 

  • Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167:627–635

    PubMed  CAS  Google Scholar 

  • Lin P, Polverini P, Dewhirst M, Shan S, Rao PS, Peters K (1997) Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100:2072–2078

    PubMed  CAS  Google Scholar 

  • Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE, Peters KG (1998) Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 95:8829–8834

    Article  PubMed  CAS  Google Scholar 

  • Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99:11205–11210

    Article  PubMed  CAS  Google Scholar 

  • Machein MR, Knedla A, Knoth R, Wagner S, Neuschi E, Plate KH (2004) Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 165:1557–1570

    CAS  Google Scholar 

  • Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  • Master Z, Jones N, Tran J, Jones J, Kerbel RS, Dumont DJ (2001) Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak. EMBO J 20:5919–5928

    Article  PubMed  CAS  Google Scholar 

  • Oliner J, Min H, Leal J, Yu D, Rao S, You E, Tang X, Kim H, Meyer S, Han SJ, Hawkins N, Rosenfeld R, Davy E, Graham K, Jacobsen F, Stevenson S, Ho J, Chen Q, Hartmann T, Michaels M, Kelley M, Li L, Sitney K, Martin F, Sun JR, Zhang N, Lu J, Estrada J, Kumar R, Coxon A, Kaufman S, Pretorius J, Scully S, Cattley R, Payton M, Coats S, Nguyen L, Desilva B, Ndifor A, Hayward I, Radinsky R, Boone T, Kendall R (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6:507–516

    Article  PubMed  CAS  Google Scholar 

  • Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  • Pitera JE, Woolf AS, Gale NW, Yancopoulos GD, Yuan HT (2004) Dysmorphogenesis of kidney cortical peritubular capillaries in angiopoietin-2-deficient mice. Am J Pathol 165:1895–1906

    PubMed  CAS  Google Scholar 

  • Popkov M, Jendreyko N, McGavern DB, Rader C, Barbas CF 3rd (2005) Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2 intrabody. Cancer Res 65:972–981

    PubMed  CAS  Google Scholar 

  • Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74

    Article  PubMed  CAS  Google Scholar 

  • Siemeister G, Schirner M, Weindel K, Reusch P, Menrad A, Marme D, Martiny-Baron G (1999) Two independent mechanisms essential for tumor angiogenesis: inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. Cancer Res 59:3185–3191

    PubMed  CAS  Google Scholar 

  • Strumberg D (2005) Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc) 41:773–784

    Article  CAS  Google Scholar 

  • Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Sweeney CJ, Miller KD, Sledge GW Jr (2003) Resistance in the anti-angiogenic era: nay-saying or a word of caution? Trends Mol Med 9:24–29

    Article  PubMed  CAS  Google Scholar 

  • Tait CR, Jones PF (2004) Angiopoietins in tumours: the angiogenic switch. J Pathol 204:1–10

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Mori M, Sakamoto Y, Makuuchi M, Sugimachi K, Wands JR (1999) Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest 103:341–345

    Article  PubMed  CAS  Google Scholar 

  • Thurston G (2002) Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage. J Anat 200:575–580

    Article  PubMed  CAS  Google Scholar 

  • Tournaire R, Simon MP, le Noble F, Eichmann A, England P, Pouyssegur J(2004) A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep 5:262–267

    Article  PubMed  CAS  Google Scholar 

  • Visconti RP, Richardson CD, Sato TN (2002) Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci USA 99:8219–8224

    Article  PubMed  CAS  Google Scholar 

  • White RR, Shan S, Rusconi CP, Shetty G, Dewhirst MW, Kontos CD, Sullenger BA(2003) Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc Natl Acad Sci USA 100:5028–5033

    Article  PubMed  CAS  Google Scholar 

  • Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS (2002) Effect of p53 status on tumor response to antiangiogenic therapy. Science 295:1526–1528

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Stamenkovic I (2001) Angiopoietin-2 is implicated in the regulation of tumor angiogenesis. Am J Pathol 158:563–570

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hughes, P.E., Polverino, A., Oliner, J.D., Kendall, R.L. (2008). Angiopoietin-2 Antagonists for Anti-Angiogenic Therapy. In: Marmé, D., Fusenig, N. (eds) Tumor Angiogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33177-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33177-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33176-6

  • Online ISBN: 978-3-540-33177-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics