Skip to main content

Inflammation and Angiogenesis: Innate Immune Cells as Modulators of Tumor Vascularization

  • Chapter
Tumor Angiogenesis

Abstract

Inflammation is an essential process for survival and for the physiological defense against pathogens. After early reports by Virchow suggesting a functional connection between inflammation and cancer, the pathological role of inflammation in promoting tumor growth and invasion has recently again entered the focus of attention. There is now clear evidence that one essential contribution of the inflammatory infiltrate to tumor growth is the stimulation of angiogenesis. Different cell types of the innate immune system, particularly macrophages, mast cells, and neurophils, play an active role in enhancing tumor angiogenesis — either directly, via the release of vesicle-stored growth factors, cytokines and proteolytic enzymes, or indirectly, via paracrine signalling cascades. This concept of an indirect inflammation-dependent induction of angiogenesis places inflammation as a target for tumor therapy and, even better, for the prevention of tumor angiogenesis by anti-inflammatory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albini A, Tosetti F, Benelli R, Noonan DM (2005) Tumor inflammatory angiogenesis and its chemoprevention. Can-cer Res 65:10637–10641

    CAS  Google Scholar 

  • Allavena P, Sica A, Vecchi A, Locati M, Sozzani S, Mantovani A (2000) The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol Rev 177:141–149

    Article  PubMed  CAS  Google Scholar 

  • Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766

    PubMed  CAS  Google Scholar 

  • Balkwill F (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13:135–141

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  • Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S et al (1999) In breast carcinoma tissue, immature den-dritic cells reside within the tumor, whereas mature den-dritic cells are located in peritumoral areas. J Exp Med 190:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Bellocq A, Antoine M, Flahault A, Philippe C, Crestani B, Bernaudin JF et al (1998) Neutrophil alveolitis in bron-chioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. Am J Pathol 152:83–92

    PubMed  CAS  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implica-tions for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  • Boccaccio C, Sabatino G, Medico E, Girolami F, Follenzi A, Reato G et al (2005) The MET oncogene drives a ge-netic programme linking cancer to haemostasis. Nature 434:396–400

    Article  PubMed  CAS  Google Scholar 

  • Burke B, Giannoudis A, Corke KP, Gill D, Wells M, Ziegler-Heitbrock L et al (2003) Hypoxia-induced gene expres-sion in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 163:1233–1243

    PubMed  CAS  Google Scholar 

  • Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M et al (2002) Expression of HIF-1alpha by human macro-phages: implications for the use of macrophages in hy-poxia-regulated cancer gene therapy. J Pathol 196:204–212

    Article  PubMed  CAS  Google Scholar 

  • Caruso RA, Bellocco R, Pagano M, Bertoli G, Rigoli L, Infer-rera C (2002) Prognostic value of intratumoral neutro-phils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 15:831–837

    Article  PubMed  Google Scholar 

  • Clevers H (2004) At the crossroads of inflammation and can-cer. Cell 118:671–674

    Article  PubMed  CAS  Google Scholar 

  • Coussens LM, Hanahan D, Arbeit JM (1996) Genetic pre-disposition and parameters of malignant progression in K14-HPV16 transgenic mice. Am J Pathol 149:1899–1917

    PubMed  CAS  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithe-lial carcinogenesis. Genes Dev 13:1382–1397

    PubMed  CAS  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490

    Article  PubMed  CAS  Google Scholar 

  • Dalgleish AG, O’Byrne KJ (2002) Chronic immune activa-tion and inflammation in the pathogenesis of AIDS and cancer. Adv Cancer Res 84:231–276

    Article  PubMed  CAS  Google Scholar 

  • DeVisser KE, Korets LV, Coussens LM (2005) De novo car-cinogenesis promoted by chronic inflammation is B lym-phocyte dependent. Cancer Cell 7:411–423

    Article  PubMed  CAS  Google Scholar 

  • Enk AH, Jonuleit H, Saloga J, Knop J (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73:309–316

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  PubMed  CAS  Google Scholar 

  • Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G et al (2006) Angiopoietin-2 sensitizes endo-thelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239

    Article  PubMed  CAS  Google Scholar 

  • Foekens JA, Peters HA, Look MP, Portengen H, Schmitt M, Kramer MD et al (2000) The urokinase system of plas-minogen activation and prognosis in 2780 breast cancer patients. Cancer Res 60:636–643

    PubMed  CAS  Google Scholar 

  • Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pix-ley FJ et al (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  PubMed  CAS  Google Scholar 

  • Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Gutschalk CM, Herold-Mende CC, Fusenig NE, Muel-ler MM (2006) Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating fac-tor promote malignant growth of cells from head and neck squamous cell carcinomas in vivo. Cancer Res 66:8026–8036

    Article  PubMed  CAS  Google Scholar 

  • Hackstein H, Morelli AE, Thomson AW (2001) Designer den-dritic cells for tolerance induction: guided not misguided missiles. Trends Immunol 22:437–442

    Article  PubMed  CAS  Google Scholar 

  • Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, No-mura Y (2000) Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 7:263–269

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mech-anisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  • Heryanto B, Girling JE, Rogers PA (2004) Intravascular neu-trophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 127:613–620

    Article  PubMed  CAS  Google Scholar 

  • Hildenbrand R, Glienke W, Magdolen V, Graeff H, Stutte HJ, Schmitt M (1998) Urokinase receptor localization in breast cancer and benign lesions assessed by in situ hy-bridization and immunohistochemistry. Histochem Cell Biol 110:27–32

    Article  PubMed  CAS  Google Scholar 

  • Hiromatsu Y, Toda S (2003) Mast cells and angiogenesis. Mi-crosc Res Tech 60:64–69

    Article  Google Scholar 

  • Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) An-giogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273

    Article  PubMed  CAS  Google Scholar 

  • Huegel R, Velasco P, de la Luz Sierra M, Christophers E, Sch-roder JM, Schwarz T et al (2006) Novel anti-inflammatory properties of the angiogenesis inhibitor vasostatin. J In-vest Dermatol 127:65–74

    Article  CAS  Google Scholar 

  • Imada A, Shijubo N, Kojima H, Abe S (2000) Mast cells cor-relate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 15:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki K, Kumara E, Yoshimine T, Nakagawa H, Sato M, Hayakawa T (2000) Elastase expression by infiltrating neutrophils in gliomas. Neurol Res 22:465–468

    PubMed  CAS  Google Scholar 

  • Kankkunen JP, Harvima IT, Naukkarinen A (1997) Quanti-tative analysis of tryptase and chymase containing mast cells in benign and malignant breast lesions. Int J Cancer 72:385–388

    Article  PubMed  CAS  Google Scholar 

  • Koide N, Nishio A, Sato T, Sugiyama A, Miyagawa S (2004) Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am J Gastroenterol 99:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Korff T, Augustin HG (1999) Tensional forces in fibrillar ex-tracellular matrices control directional capillary sprout-ing. J Cell Sci 112:3249–3258

    PubMed  CAS  Google Scholar 

  • Lachter J, Stein M, Lichtig C, Eidelman S, Munichor M (1995) Mast cells in colorectal neoplasias and premalignant dis-orders. Dis Colon Rectum 38:290–293

    Article  PubMed  CAS  Google Scholar 

  • Lanone S, Zheng T, Zhu Z, Liu W, Lee CG, Ma B et al (2002) Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13-induced inflamma-tion and remodeling. J Clin Invest 110:463–474

    Article  PubMed  CAS  Google Scholar 

  • Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast car-cinoma. Cancer Res 56:4625–4629

    PubMed  CAS  Google Scholar 

  • Leek RD, Landers RJ, Harris AL, Lewis CE (1999) Necrosis correlates with high vascular density and focal macro-phage infiltration in invasive carcinoma of the breast. Br J Cancer 79:991–995

    Article  PubMed  CAS  Google Scholar 

  • Leek RD, Hunt NC, Landers RJ, Lewis CE, Royds JA, Har-ris AL (2000) Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 190:430–436

    Article  PubMed  CAS  Google Scholar 

  • Lespagnard L, Gancberg D, Rouas G, Leclercq G, de Saint-Aubain Somerhausen N, di Leo A et al (1999) Tumor-infil-trating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int J Cancer 84:309–314

    Article  PubMed  CAS  Google Scholar 

  • Lewis C, Murdoch C (2005) Macrophage responses to hy-poxia: implications for tumor progression and anti-can-cer therapies. Am J Pathol 167:627–635

    PubMed  CAS  Google Scholar 

  • Lewis C, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res66:605–612

    Article  PubMed  CAS  Google Scholar 

  • Lewis C, Leek R, Harris A, McGee JO (1995) Cytokine regula-tion of angiogenesis in breast cancer: the role of tumor-associated macrophages. J Leukoc Biol 57:747–751

    PubMed  CAS  Google Scholar 

  • Liu XH, Kirschenbaum A, Lu M, Yao S, Dosoretz A, Hol-land JF et al (2002) Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear local-ization in a human prostate cancer cell line. J Biol Chem 277:50081–50086

    Article  PubMed  CAS  Google Scholar 

  • Locati M, Deuschle U, Massardi ML, Martinez FO, Sironi M, Sozzani S et al (2002) Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Im-munol 168:3557–3562

    CAS  Google Scholar 

  • Macarthur M, Hold GL, E1-Omar EM (2004) Inflammation and cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointesti-nal malignancy. Am J Physiol Gastrointest Liver Physiol 286:G515–G520

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A (2004) Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer 40:1660–1667

    Article  PubMed  CAS  Google Scholar 

  • Masson V, dela Ballina LR, Munaut C, Wielockx B, Jost M, Maillard C et al (2005) Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J 19:234–236

    PubMed  CAS  Google Scholar 

  • Meininger CJ, Zetter BR (1992) Mast cells and angiogenesis. Semin Cancer Biol 3:73–79

    PubMed  CAS  Google Scholar 

  • Mueller MM (2006) Inflammation in epithelial skin tumours: old stories and new ideas. Eur J Cancer 42:735–744

    Article  PubMed  CAS  Google Scholar 

  • Mueller MM, Fusenig NE (2002) Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation 70:486–497

    Article  PubMed  Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes — bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hy-poxic areas of tumors and other ischemic tissues. Blood 104:2224–2234

    Article  PubMed  CAS  Google Scholar 

  • Nakao S, Kuwano T, Tsutsumi-Miyahara C, Ueda S, Kimura YN, Hamano S et al (2005) Infiltration of COX-2-express-ing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest 115:2979–2991

    Article  PubMed  CAS  Google Scholar 

  • Negus RP, Stamp GW, Hadley J, Balkwill FR (1997) Quan-titative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C che-mokines. Am J Pathol 150:1723–1734

    PubMed  CAS  Google Scholar 

  • Nielsen HJ, Hansen U, Christensen IJ, Reimert CM, Brunner N, Moesgaard F (1999) Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J Pathol 189:487–495

    Article  PubMed  CAS  Google Scholar 

  • Nienartowicz A, Sobaniec-Lotowska ME, Jarocka-Cyrta E, Lemancewicz D (2006) Mast cells in neoangiogenesis. Med Sci Monit 12:RA53–RA56

    PubMed  Google Scholar 

  • Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H et al (1999) Macrophage infiltration and heme oxygen-ase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5:1107–1113

    PubMed  CAS  Google Scholar 

  • Nishizuka I, Ichikawa Y, Ishikawa T, Kamiyama M, Hasegawa S, Momiyama N et al (2001) Matrilysin stimulates DNA synthesis of cultured vascular endothelial cells and in-duces angiogenesis in vivo. Cancer Lett 173:175–182

    Article  PubMed  CAS  Google Scholar 

  • Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutro-phils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103:12493–12398

    Article  PubMed  CAS  Google Scholar 

  • Obermueller E, Vosseler S, Fusenig NE, Mueller MM(2004) Cooperative autocrine and paracrine functions of gran-ulocyte colony-stimulating factor and granulocyte-mac-rophage colony-stimulating factor in the progression of skin carcinoma cells. Cancer Res 64:7801–7812

    Article  PubMed  CAS  Google Scholar 

  • Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, Hicklin DJ et al (2005) Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J 19:2005–2007

    PubMed  CAS  Google Scholar 

  • Ohno S, Ohno Y, Suzuki N, Kamei T, Koike K, Inagawa H et al (2004) Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24:3335–3342

    PubMed  Google Scholar 

  • O’Sullivan C, Lewis CE, Harris AL, McGee JO (1993) Secre-tion of epidermal growth factor by macrophages associ-ated with breast carcinoma. Lancet 342:148–149

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW (2004) Tumour-educated macrophages promote tu-mour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  • Rajashekhar G, Willuweit A, Patterson CE, Sun P, Hilbig A, Breier G et al (2006) Continuous endothelial cell activa-tion increases angiogenesis: evidence for the direct role of endothelium linking angiogenesis and inflammation. J Vasc Res 43:193–204

    Article  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Nico B, Crivellato E, Roneali L, Dam-macco F (2001a) The role of mast cells in tumour angio-genesis. Br J Haematol 115:514–521

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Crivellato E, Candussio L, Nico B, Vacca A, Ron-cali L et al (2001b) Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic mem-brane. Clin Exp Allergy 31:602–608

    Article  PubMed  CAS  Google Scholar 

  • Riboldi E, Musso T, Moroni E, Urbinati C, Bernasconi S, Rus-nati M, et al (2005) Cutting edge: proangiogenic proper-ties of alternatively activated dendritic cells. J Immunol 175:2788–2792

    PubMed  CAS  Google Scholar 

  • Roche WR (1985) Mast cells and tumour angiogenesis: the tumor-mediated release of an endothelial growth factor from mast cells. Int J Cancer 36:721–728

    Article  PubMed  CAS  Google Scholar 

  • Ross JA, Auger MJ (2002) The biology of the macrophage. In: Burke B, Lewis CE (eds) The macrophage.kOxford Univer-sity Press, Oxford

    Google Scholar 

  • Scapini P, Nesi L, Morini M, Tanghetti E, Belleri M, Noonan D et al (2002) Generation of biologically active angio-statin kringle 1–3 by activated human neutrophils. J Im-munol 168:5798–5804

    CAS  Google Scholar 

  • Scapini P, Morini M, Tecchio C, Minghelli S, di Carlo E, Tanghetti E et al (2004) CXCLl/macrophage inflamma-tory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth fac-tor-A. J Immunol 172:5034–5040

    PubMed  CAS  Google Scholar 

  • Scarpino S, Stoppacciaro A, Ballerini F, Marchesi M, Prat M, Stella MC et al (2000) Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells. Am J Pathol 156:831–837

    PubMed  CAS  Google Scholar 

  • Schaider H, Oka M, Bogenrieder T, Nesbit M, Satyamoorthy K, Berking C et al (2003) Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. Int J Cancer 103:335–343

    Article  PubMed  CAS  Google Scholar 

  • Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C et al (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947–956

    PubMed  CAS  Google Scholar 

  • Schruefer R, Lutze N, Schymeinsky J, Walzog B (2005) Human neutrophils promote angiogenesis by a paracrine feed-forward mechanism involving endothelial interleukin-8. Am J Physiol Heart Circ Physiol 288:H1186–H1192

    Article  PubMed  CAS  Google Scholar 

  • Schruefer R, Sulyok S, Schymeinsky J, Peters T, Scharffetter-Kochanek K, Walzog B (2006) The proangiogenic capacity of polymorphonuclear neutrophils delineated by microar-ray technique and by measurement of neovascularization in wounded skin of CD 18-deficient mice. J Vasc Res 43:1–11

    Article  PubMed  CAS  Google Scholar 

  • Schwaab T, Schned AR, Heaney JA, Cole BF, Atzpodien J, Wittke F et al (1999) In vivo description of dendritic cells in human renal cell carcinoma. J Urol 162:567–573

    Article  PubMed  CAS  Google Scholar 

  • Shijubo N, Kojima H, Nagata M, Ohchi T, Suzuki A, Abe S et al (2003) Tumor angiogenesis of non-small cell lung cancer. Microsc Res Tech 60:186–198

    Article  PubMed  CAS  Google Scholar 

  • Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised pop-ulation promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  PubMed  CAS  Google Scholar 

  • Starkey JR, Crowle PK, Taubenberger S (1988) Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42:48–52

    Article  PubMed  CAS  Google Scholar 

  • Sugar LM (2006) Inflammation and prostate cancer. Can J Urol 13[Suppl 1]:46–47

    PubMed  Google Scholar 

  • Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C (1991) Macrophage-derived angiogenesis factors. Pharmacol Ther 51:195–216

    Article  PubMed  CAS  Google Scholar 

  • Troy A, Davidson P, Atkinson C, Hart D (1998) Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J Urol 160:214–219

    Article  PubMed  CAS  Google Scholar 

  • Tsujitani S, Kakeji Y, Watanabe A, Kohnoe S, Maehara Y, Sugimachi K (1990) Infiltration of dendritic cells in re-lation to tumor invasion and lymph node metastasis in human gastric cancer. Cancer 66:2012–2016

    Article  PubMed  CAS  Google Scholar 

  • Turini ME, DuBois RN (2002) Cyclooxygenase-2: a therapeu-tic target. Annu Rev Med 53:35–57

    Article  PubMed  CAS  Google Scholar 

  • Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A et al (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin In-vest 109:777–785

    CAS  Google Scholar 

  • Vicari AP, Caux C (2002) Chemokines in cancer. Cytokine Growth Factor Rev 13:143–154

    Article  PubMed  CAS  Google Scholar 

  • Virchow R (1862/1863) Die krankhaften Geschwülste: 30 Vorlesungen gehalten während des Wintersemesters 1862/1863. Hirschwald, Berlin (Vorlesungen über Pa-thologie; 3,1; 3,2)

    Google Scholar 

  • Vosseier S, Mirancea N, Bohlen P, Mueller MM, Fusenig NE (2005) Angiogenesis inhibition by vascular endothelial growth factor receptor-2 blockade reduces stromal ma-trix metalloproteinase expression, normalizes stromal tissue, and reverts epithelial tumor phenotype in surface heterotransplants. Cancer Res 65:1294–1305

    Article  Google Scholar 

  • Wang W, Bergh A, Damber JE (2005) Cyclooxygenase-2 ex-pression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 11:3250–3256

    Article  PubMed  CAS  Google Scholar 

  • White JR, Harris RA, Lee SR, Craigon MH, Binley K, Price T et al (2004) Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regu-lators of angiogenesis. Genomics 83:1–8

    Article  PubMed  CAS  Google Scholar 

  • Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Katayama I, Nishioka K (1997) Expression of stem cell factor in basal cell carcinoma. Br J Dermatol 137:709–713

    Article  PubMed  CAS  Google Scholar 

  • Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentru-ber DJ, Topalian SL et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth fac-tor antibody, for metastatic renal cancer. N Engl J Med 349:427–434

    Article  PubMed  CAS  Google Scholar 

  • Zittermann SI, Issekutz AC (2006) Endothelial growth fac-tors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation. J Leukoc Biol 80:247–257

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mueller, M. (2008). Inflammation and Angiogenesis: Innate Immune Cells as Modulators of Tumor Vascularization. In: Marmé, D., Fusenig, N. (eds) Tumor Angiogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33177-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33177-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33176-6

  • Online ISBN: 978-3-540-33177-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics