Skip to main content

3D Imaging with Flat-Detector C-Arm Systems

  • Chapter
Multislice CT

Abstract

Three-dimensional (3D) C-arm computed tomography is a new and innovative imaging technique. It uses two-dimensional (2D) X-ray projections acquired with a flat-panel detector C-arm angiography system to generate CT-like images. To this end, the C-arm system performs a sweep around the patient, acquiring up to several hundred 2D views. They serve as input for 3D cone-beam reconstruction. Resulting voxel data sets can be visualized either as cross-sectional images or as 3D data sets using different volume rendering techniques. Initially targeted at 3D high-contrast neurovascular applications, 3D C-arm imaging has been continuously improved over the years and is now capable of providing CT-like soft-tissue image quality. In combination with 2D fluoroscopic or radiographic imaging, information provided by 3D C-arm imaging can be valuable for therapy planning, guidance, and outcome assessment all in the interventional suite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aichinger H, Dierker J, Joite-Barfuß S, et al. (2004) Radiation exposure and image quality in X-ray diagnostic radiology-Physical principles and clinical applications. Springer, Heidelberg Berlin New York

    Google Scholar 

  • Antonuk LE, El-Mohri Y, Siewerdsen JH, et al. (1997) Empirical investigation of the signal performance of a high-resolution, indirect detection, active matrix flat-panel imager (AMFPI) for fluoroscopic and radiographic operation. Med Phys 24 :51–70

    Article  CAS  Google Scholar 

  • Anxionnat R, Bracard S, Ducrocq X, et al. (2001) Intracranial aneurysms: Clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 218:799–808

    PubMed  CAS  Google Scholar 

  • Baert SAM, Penney GP, van Walsum T, et al. (2004) Precalibration versus 2D-3D registration for 3D guide wire display in endovascular interventions. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI, pp 577–584

    Google Scholar 

  • Balter S, Banckwitz R, Joite-Barfuß S, et al. (2005) Protocol for evaluating CT reconstructions acquired on an angiographic C-arm. Biomedizinische Technik 50 (Suppl 1, part 1):475–476

    Google Scholar 

  • Bani-Hashemi A, Navab N, Nadar M, et al. (1998) Interventional 3D-angiography: calibration, reconstruction and visualization system. In: Navab N (ed) Fourth IEEE Workshop on Applications of Computer Vision, 1998. WACV ‘98. Proceedings, pp. 246–247

    Google Scholar 

  • Barrett HH, Swindell W (1981) Radiological Imaging. Academic Press, New York

    Google Scholar 

  • Becker CR, Schätzl M, Feist H, et al. (1998) Radiation dose for investigation of the chest and abdomen. Comparison of sequential, spiral and electron beam computed tomography. Radiologe 38:726–729

    Article  PubMed  CAS  Google Scholar 

  • Benndorf G, Strother CM, Claus B, et al. (2005) Angiographic CT in cerebrovascular stenting. Am J Neuroradiol 26:1813–1818

    PubMed  Google Scholar 

  • Benndorf G, Klucznik RP, Strother CM (2006) Angiographic computed tomography for imaging of underdeployed intracranial stent. Circulation 114 :499–500

    Article  Google Scholar 

  • Binkert CA, Alencar H, Singh J, et al. (2006) Translumbar type II endoleak repair using angiographic CT. J Vasc Intervent Radiol 17:1349–1353

    Google Scholar 

  • Bruijns TJC, Bastiaens RJM, Hoornaert B, et al. (2002) Image quality of a large-area dynamic flat detector: comparison with a state-of-the-art II/TV system. In: Medical Imaging 2002: Physics of Medical Imaging. San Diego, pp 332–343

    Google Scholar 

  • Busse F, Ruetten W, Sandkamp B, et al. (2002) Design and performance of a high-quality cardiac flat detector. In: Medical Imaging 2002: Physics of Medical Imaging. San Diego, CA, pp 819–827

    Google Scholar 

  • Byrne JV, Colominas C, Hipwell J, et al. (2004) Assessment of a technique for 2D-3D registration of cerebral intra-arterial angiography. Br J Radiol 77:123–128

    Article  PubMed  CAS  Google Scholar 

  • Choquette M, Demers Y, Shukri Z, et al. (2001) Performance of a real-time selenium-based X-ray detector for fluoroscopy. In: Medical Imaging 2001: Physics of Medical Imaging. San Diego, CA, pp 501–508

    Google Scholar 

  • Colbeth RE, Boyce SJ, Fong R, et al. (2001) 40×30 cm flat-panel imager for angiography, R&F, and cone-beam CT applications. In: Medical Imaging 2001: Physics of Medical Imaging. San Diego, CA, pp 94–102

    Google Scholar 

  • Ducourant T, Couder D, Wirth T, et al. (2003) Image quality of digital radiography using flat detector technology. In: Medical Imaging 2003: Physics of Medical Imaging. San Diego, CA, pp 203–214

    Google Scholar 

  • Fahrig R, Fox AJ, Lownie S, et al. (1997) Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results. Am J Neuroradiol 18:1507–1514

    PubMed  CAS  Google Scholar 

  • Fahrig R, Dixon R, Payne T, et al. (2006) Dose and image quality for a cone-beam C-arm CT system. Med Phys 33:4541–4550

    Article  PubMed  Google Scholar 

  • Feldkamp L, Davis L, Kress J (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619

    Article  Google Scholar 

  • Flohr T (2000) Method for post-processing of a tomogram and computed tomography apparatus operating in accordance with the method. US Patent 6047039, Siemens AG, Germany

    Google Scholar 

  • Froelich JJ, Wagner H-J, Ishaque N, et al. (2000) Comparison of C-arm CT fluoroscopy and conventional fluoroscopy for percutaneous biliary drainage procedures. J Vasc Intervent Radiol 11:477–482

    Article  CAS  Google Scholar 

  • Gies M, Kalender WA, Wolf H, et al. (1999) Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 26:2235–2247

    Article  PubMed  CAS  Google Scholar 

  • Granfors PR, Albagli D, Tkaczyk JE, et al. (2001) Performance of a flat-panel cardiac detector. In: Medical Imaging 2001: Physics of Medical Imaging. San Diego, CA, pp 77–86

    Google Scholar 

  • Groh BA, Siewerdsen JH, Drake DG, et al. (2002) A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phy 29:967–975

    Article  CAS  Google Scholar 

  • Heran NS, Song JK, Namba K, et al. (2006) The Utility of DynaCT in neuroendovascular procedures. A J Neuroradiol 27:330–332

    CAS  Google Scholar 

  • Hochmuth A, Spetzger U, Schumacher M (2002) Comparison of three-dimensional rotational angiography with digital subtraction angiography in the assessment of ruptured cerebral aneurysms. Am J Neuroradiol 23:1199–1205

    PubMed  Google Scholar 

  • Hoff DJ, Wallace MC, terBrugge KG, et al. (1994) Rotational angiography assessment of cerebral aneurysms. Am J Neuroradiol 15:1945–1948

    PubMed  CAS  Google Scholar 

  • Hsieh J (2003) Computed Tomography. SPIE Press, Bellingham, WA

    Google Scholar 

  • Hsieh J, Chao E, Thibault J, et al. (2004) A novel reconstruction algorithm to extend the CT scan field-of-view. Med Phys 31:2385–2391

    Article  PubMed  CAS  Google Scholar 

  • Jaffray DA, Siewerdsen JH (2000) Cone-beam computed tomography with a flat-panel imager: Initial performance characterization. Med Phys 27:1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Joseph PM, Spital RD (1978) A method for correcting bone-induced artifacts in computed tomography scanners. J Comp Ass Tomography 2:100–108

    Article  CAS  Google Scholar 

  • Kalender W, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 26:2248–2253

    Article  PubMed  CAS  Google Scholar 

  • Kalender W, Kyriakou Y (2007) Flat-detector computed tomography (FD-CT). Eur Radiol 17:2767–2779

    Article  PubMed  Google Scholar 

  • Kak AC, Slaney M (1988) Principles of Computerized Tomographic Imaging. IEEE, New York

    Google Scholar 

  • Koppe R, Klotz E, de Beek JO, et al. (1995) Three-dimensional vessel reconstruction based on rotational angiography. In: Lemke HU, Inamura K, Jaffe CC, et al. (eds) Proc Int Symp Computer Assisted Radiology. Springer, Berlin Heidelberg New York, pp 101–107

    Google Scholar 

  • Kyriakou Y, Riedel T, Kalender W (2006) Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT. Phys Med Biol 51:4567–4586

    Article  PubMed  Google Scholar 

  • Kyriakou Y, Kalender W (2007) Efficiency of antiscatter grids for flat-detector CT. Phys Med Biol 52:6275–6293

    Article  PubMed  Google Scholar 

  • Lauritsch G, Boese J, Wigstrom L, et al. (2006) Towards cardiac C-arm computed tomography. IEEE Transact Med Imaging 25:922–934

    Article  Google Scholar 

  • McCollough CH, Schueler BA (2000) Calculation of effective dose. Med Phys 27:828–837

    Article  PubMed  CAS  Google Scholar 

  • McCollough CH (2005) Automatic exposure control in CT: Are we done yet? Radiology 237:755–756

    Article  PubMed  Google Scholar 

  • Meyer B, Frericks B, Albrecht T, et al. (2007) Contrast-enhanced abdominal angiographic CT for intra-abdominal tumor embolization: A new tool for vessel and soft tissue visualization. Cardiovasc Intervent Radiol 30:743–749

    Article  PubMed  Google Scholar 

  • Missler U, Hundt C, Wiesmann M, et al. (2000) Three-dimensional reconstructed rotational digital subtraction angiography in planning treatment of intracranial aneurysms. Eur Radiol 10:564–568

    Article  PubMed  CAS  Google Scholar 

  • Mitschke MM, Navab N (2000) Recovering projection geometry: How a cheap camera can outperform an expensive stereo system. CVPR 2000:1193–1200

    Google Scholar 

  • Moore T, Rohm E (2006) Application protocol book for Artis zee 3D applications. Siemens AG

    Google Scholar 

  • Nagel M, Hoheisel M, Petzold R, et al. (2007) Needle and catheter navigation using electromagnetic tracking for computer-assisted C-arm CT interventions. In: Medical Imaging 2007: Visualization and Image-Guided Procedures. San Diego, CA, pp 65090J

    Google Scholar 

  • Nagel M, Hoheisel M, Bill U, et al. (2008) Electromagnetic tracking system for minimal invasive interventions using a C-arm system with CT option: First clinical results. In: Medical Imaging 2008: Visualization and Image-Guided Procedures. San Diego, CA, pp 69180G

    Google Scholar 

  • Nakayama Y, Awai K, Funama Y et al. (2005) Abdominal CT with low tube voltage: Preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951

    Article  PubMed  Google Scholar 

  • Navab N, Bani-Hashemi AR, Mitschke MM, et al. (1996) Dynamic geometrical calibration for 3D cerebral angiography. In: Medical Imaging 1996: Physics of Medical Imaging. Newport Beach, CA, pp 361–370

    Google Scholar 

  • Navab N, Bani-Hashemi A, Nadar M, et al. (1998) Three-dimensional reconstruction from projection matrices in a C-arm based 3D-angiography system. In: Medical image computing and computer-assisted intervention—MICCAI’98, pp 119–129

    Google Scholar 

  • Ning R, Tang X, Conover DL (2002) X-ray scatter suppression algorithm for cone-beam volume CT. In: Medical Imaging 2002: Physics of Medical Imaging. San Diego, CA, pp 774–781

    Google Scholar 

  • Ohnesorge B, Flohr T, Schwarz K, et al. (2000) Efficient correction for CT image artifacts caused by objects extending outside the scan field of view. Med Phys 27:39–46

    Article  PubMed  CAS  Google Scholar 

  • Parker D (1982) Optimal short scan convolution for fanbeam CT. Med Phys 9:254–257

    Article  PubMed  CAS  Google Scholar 

  • Pruemmer M, Hornegger J, Pfister M, et al. (2006) Multi-modal 2D-3D non-rigid registration. In: Medical Imaging 2006: Image Processing. San Diego, CA, pp 61440–61412

    Google Scholar 

  • Pruemmer M, Fahrig R, Wigstrom L, et al. (2007) Cardiac C-arm CT: 4D non-model based heart motion estimation and its application. In: Medical Imaging 2007: Physics of Medical Imaging. San Diego, CA, pp 651015–651012

    Google Scholar 

  • Richter G, Engelhorn T, Struffert T, et al. (2007a) Flat panel detector angiographic CT for stent-assisted coil embolization of broad-based cerebral aneurysms. Am J Neuroradiol 28:1902–1908

    Article  CAS  Google Scholar 

  • Richter G, Pfister M, Struffert T, et al. (2007b) Visualization of self-expandable stents using 2D-3D coregistration of angiographic computed tomography data to facilitate stent assisted coil embolization of broad based intracranial aneurysms: in vitro feasibility study. In: 42. Jahrestagung der Deutschen Gesellschaft für Neuroradiologie, Frankfurt am Main

    Google Scholar 

  • Rinkel J, Gerfault L, Esteve F, et al. (2007) A new method for X-ray scatter correction: First assessment on a cone-beam CT experimental setup. Phys Med Biol 52:4633–4652

    Article  PubMed  CAS  Google Scholar 

  • Ritter D, Orman J, Schmidgunst C, et al. (2007) Three-dimensional soft tissue imaging with a mobile C-arm. Comput Med Imaging Graphics 31:91–102

    Article  Google Scholar 

  • Rowlands JA, Yorkston J (2000) Flat panel detectors for digital radiography. In: Metter RLV, Beutel J, Kundel HL (eds) Handbook of Medical Imaging. SPIE Press, Bellingham, WA, pp 223–328

    Google Scholar 

  • Rougee A, Picard CL, Trousset YL, et al. (1993) Geometrical calibration for 3D X-ray imaging. In: Medical Imaging 1993: Image Capture, Formatting, and Display. Newport Beach, CA, pp 161–169

    Google Scholar 

  • Rührnschopf E-P, Kalender W (1981) Artifacts caused by non-linear partial volume and spectral hardening effects in computerized tomography. Electromedica 2:96–105

    Google Scholar 

  • Saint-Felix D, Trousset Y, Picard C, et al. (1994) In vivo evaluation of a new system for 3D computerized angiography. Phys Med Biol 39:583–595

    Article  PubMed  CAS  Google Scholar 

  • Siewerdsen JH, Jaffray DA (2001) Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of X-ray scatter. Med Phys 28:220–231

    Article  PubMed  CAS  Google Scholar 

  • Siewerdsen JH, Daly MJ, Bakhtiar B, et al. (2006) A simple, direct method for X-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys 33:187–197

    Article  PubMed  CAS  Google Scholar 

  • Soederman M, Babic D, Homan R, et al. (2005) Three-dimensional roadmap in neuroangiography: Technique and clinical interest. Neuroradiology 47:735–740

    Article  Google Scholar 

  • Sourbelle K, Kachelriess M, Kalender W (2005) Reconstruction from truncated projections in CT using adaptive detruncation. Eur Radiol 15:1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Spahn M, Strotzer M, Voelk M, et al. (2000) Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system. Invest Radiol 35:260–266

    Article  PubMed  CAS  Google Scholar 

  • Starman J, Pelc N, Strobel N, et al. (2005) Estimating 0th and 1st moments in C-arm CT data for extrapolating truncated projections. In: Medical Imaging 2005: Image Processing. San Diego, CA, pp 378–387

    Google Scholar 

  • Sugahara T, Korogi Y, Nakashima K, et al. (2002) Comparison of 2D and 3D digital subtraction angiography in evaluation of intracranial aneurysms. Am J Neuroradiol 23:1545–1552

    PubMed  Google Scholar 

  • Sze DY, Strobel N, Fahrig R, et al. (2006) Transjugular intrahepatic portosystemic shunt creation in a polycystic liver facilitated by hybrid cross-sectional/angiographic imaging. J Vasc Intervent Radiol 17:711–715

    Article  Google Scholar 

  • Tu RK, Cohen WA, Maravilla KR, et al. (1996) Digital subtraction rotational angiography for aneurysms of the intracranial anterior circulation: injection method and optimization. Am J Neuroradiol 17:1127–1136

    PubMed  CAS  Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and effects of ionizing radiation, vol II: Effects. In: Report to the General Assembly, with scientific annexes. United Nations, Geneva New York

    Google Scholar 

  • van den Berg JC, Overtoom TTC, de Valois JC, et al. (2002) Using three-dimensional rotational angiography for sizing of covered stents. Am J Roentgenol 178:149–152

    Google Scholar 

  • Virmani S, Ryu RK, Sato KT, et al. (2007) Effect of C-arm angiographic CT on transcatheter arterial chemoembolization of liver tumors. J Vasc Intervent Radiol 18:1305–1309

    Article  Google Scholar 

  • Wallace MJ, Murthy R, Kamat PP, et al. (2007) Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Intervent Radiol 18:1500–1507

    Article  Google Scholar 

  • Wiesent K, Barth K, Navab N, et al. (2000) Enhanced 3-D-reconstruction algorithm for C-arm systems suitable for interventional procedures. IEEE Transact Med Imaging 19:391–403

    Article  CAS  Google Scholar 

  • Yamazaki T, Tamura T, Nokita M, et al. (2004) Performance of a novel 43-cm × 43-cm flat-panel detector with CsI:Tl scintillator. In: Medical Imaging 2004: Physics of Medical Imaging. San Diego, CA, pp 379–385

    Google Scholar 

  • Zellerhoff M, Scholz B, Rührnschopf EP, et al. (2005) Low contrast 3D reconstruction from C-arm data. In: Medical imaging 2005: Physics of medical imaging. SPIE, San Diego, CA, pp 646–655

    Google Scholar 

  • Zhu L, Bennett NR, Fahrig R (2006) Scatter correction method for X-ray CT using primary modulation: Theory and preliminary results. IEEE Transact Med Imaging 25:1573–1587

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strobel, N. et al. (2009). 3D Imaging with Flat-Detector C-Arm Systems. In: Reiser, M., Becker, C., Nikolaou, K., Glazer, G. (eds) Multislice CT. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33125-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33125-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33124-7

  • Online ISBN: 978-3-540-33125-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics