Skip to main content

Physical Effects of Comet and Asteroid Impacts: Beyond the Crater Rim

  • Chapter
Comet/Asteroid Impacts and Human Society

Abstract

Astronomical and geological investigations initiated in the past century have revealed that the Earth is continually subjected to the infall of a variety of solid solar system debris. Most of this debris is so small that it evaporates harmlessly, as it enters the Earth’s upper atmosphere at high speed. However, an occasional larger object survives atmosphere entry. Small examples of such objects result in meteorites on the surface of the Earth, with harmful consequences only for the rare individuals, who happen to be struck by them. More infrequent, but larger, objects can cause local or even global devastation. A recent report on the number and consequences of such impacts (Team 2003) proposes that the impact frequency can be computed as a function of the energy release, equal to the kinetic energy of the object before it strikes the Earth:

$$ T_{RE} (years) = 110E_{MT}^{0.77} $$

where T RE is the recurrence interval (in years) and E MT is the energy release in megatons of TNT equivalent (1 MT = 1015 cal ≈ 4.2 × 1015 J).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  ADS  Google Scholar 

  • Alvarez W (1986) Toward a theory of impact crises. EOS 67:653–655

    Google Scholar 

  • Alvarez W, Claeys P, Kieffer SW (1995) Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub crater. Science 269:930–935

    Article  ADS  Google Scholar 

  • Birks JW, Crutzen PJ, Roble GG (2007) Frequent ozone depletion resulting from impacts of asteroids and comets. Chapter 13 of this volume

    Google Scholar 

  • Bland PA, Artemieva NA (2003) Efficient disruption of small asteroids by Earth’s atmosphere. Nature 424:288–291

    Article  ADS  Google Scholar 

  • Bralower TJ, Paull CK, Leckie RM (1998) The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology 26:331–334

    Article  ADS  Google Scholar 

  • Brett R (1992) The Cretaceous-Tertiary extinction: a lethal mechanism involving anhydrite target rocks. Geochem Cosmochim Acta 56:3603–3606

    Article  ADS  Google Scholar 

  • Busby CJ, Yip G, Blikra L, Renne P (2002) Coastal landsliding and catastrophic sedimenation triggered by Cretaceous-Tertiary bolide impact: a Pacific margin example? Geology 30:687–690

    Article  ADS  Google Scholar 

  • Chyba CF, Thomas PJ, Zahnle KJ (1993) The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361:40–44

    Article  ADS  Google Scholar 

  • Collins GS, Melosh HJ, Marcus RA (2005) Earth Impact Effects Program: a web-based computer program for calculating the regional envionmental consequences of a meteoroid impact on Earth. Meteoritics and Planet Sci 40: 817–840

    Article  ADS  Google Scholar 

  • Chapman CR, Morrison D (1994) Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367:33–39

    Article  ADS  Google Scholar 

  • Day S, Maslin M (2005), Widespread sediment liquefaction and continental slope failure at the K-T boundary: the link between large impacts, gas hydrates and carbon isotope excursions. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geol Soc Amer Special Paper 384, pp 239–258

    Google Scholar 

  • Francis P (1993) Volcanoes: a planetary perspective. Oxford Univ Press, Oxford

    Google Scholar 

  • Glasstone S, Dolan PJ (ed) (1977) Effects of nuclear weapons. United States Departments of Defense and Energy

    Google Scholar 

  • Gomberg J, Bodin P, Larson K, Dragert H (2004) Earthquake nucleation by transient deformations caused by the M = 7.9 Denali, Alaska, earthquake. Natg 427:621–624

    Article  ADS  Google Scholar 

  • Grieve R, Therriault A (2000) Vredefort, Sudbury, Chicxulub: three of a kind? Ann Rev Earth Planet Sci 28:305–338

    Article  ADS  Google Scholar 

  • Hills JG, Nemchinov IV, Popov SP, Teterev AV (1994) Tsuanmi generated by small asteroid impacts. In: Geherls T (ed) Hazards from comets and asteroids. Univ of Arizona Press, Tucson, AZ, pp 779–789

    Google Scholar 

  • Huntoon PW, Shoemaker EM (1995) Roberts Rift, Canyonlands, Utah, a natural hydraulic fracture caused by comet or asteroid impact. Ground Water 33:561–569

    Article  Google Scholar 

  • Husen S, Taylor R, Smith RB, Healser H (2004) Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska. Geology 32:537–540

    Article  ADS  Google Scholar 

  • Ivanov BA, Langenhorst F, Deutsch A, Hornemann U (2002) How strong was impact-induced CO2 degassing in the Cretaceous-Tertiary event? Numerical modeling of shock recovery experiments. In: Koeberl C, MacLeod KG (ed) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356, pp 587–594

    Google Scholar 

  • Ivanov BA, Nemchinov IV, Svetsov VA, Provalov AA, Khazins VM, Phillips RJ (1992) Impact cratering on Venus: physical and mechanical models. J Geophys Res 97:16167–16181

    Article  ADS  Google Scholar 

  • Jones EM, Kodis JW (1982) Atmospheric effects of large body impacts: the first few minutes. In: Silver LT, Schultz PH (ed) Geological implications of impacts of large asteroids and comets on the Earth. Geol Soc Amer Sp Pap 190:175–186

    Google Scholar 

  • Klaus A, Norris RD, Kroon D, Smit J (2000) Impact-induced mass wasting at the K-T boundary: Blake Nose, western North Atlantic. Geology 28:319–322

    Article  ADS  Google Scholar 

  • Korycansky DG, Lynett PJ (2005) Offshore breaking of impact tsunami: the van Dorn effect revisited. Geophys Res Lett 33: DOI:10.1029/2004GL021918

    Google Scholar 

  • Kring DA (1997) Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment. Meteoritics and Planet Sci 32:517–530

    Article  ADS  Google Scholar 

  • Kring DA, Durda DD (2002) Trajectories and distribution of material ejected from the Chicxulub impact crater: implications for postimpact wildfires. J Geophy Res 107(6):1–22

    Google Scholar 

  • Krinov EL (1966) Giant Meteorites. Pergamon Press

    Google Scholar 

  • LeMéhauté B (1971) Theory of explosion-generated water waves. In: Chow VT (ed) Advances in Hydroscience 7:1–79. Academic Press, New York and London

    Google Scholar 

  • Luder T, Benz W, Stocker TF (2002) Modeling long-term climatic effects of impacts: First results. In: Koeberl C, MacLeod KG (ed) Catastrophic Events and Mass Extinctions: Impacts and Beyond, vol Special Paper 356:717–729. Geological Society of America, Boulder

    Chapter  Google Scholar 

  • Melosh HJ (1989) Impact Cratering: A Geologic Process. Oxford University Press, New York

    Google Scholar 

  • Melosh HJ (2000) A new and improved equation of state for impact studies. In: 31st LPSC, Abstract #1903, Lunar and Planetary Institute, Houston (CD-ROM)

    Google Scholar 

  • Melosh HJ (2003) Impact tsunami: an over-rated hazard, LPSC XXXIV, Abstract #1338

    Google Scholar 

  • Melosh HJ, Pierazzo E (1997) Impact vapor plume expansion with realistic geometry and equation of state, LPSC XXVIII, pp 935–936

    ADS  Google Scholar 

  • Melosh HJ, Schneider NM, Zahnle KJ, Latham D (1990) Ignition of global wildfires at the Cretaceous/Tertiary boundary. Nature 6255:251–254

    Article  ADS  Google Scholar 

  • Nemchinov IV, Svetsov VV (1991) Global consequences of radiation impulse caused by comet impact. Adv Space Res 112:95–97

    Article  ADS  Google Scholar 

  • Nemtchinov IV, Shuvalov VV, Artem’eva NA, Ivanov BA, Kosarev IB, Trubetskaya IA (1998) Light flashes caused by meteoroid impacts on the lunar surface. Solar System Research 32:99–114

    ADS  Google Scholar 

  • Nininger HH (1956) Arizona’s Meteorite Crater. American Meteorite Laboratory, Denver, Colo

    Google Scholar 

  • Norris RD, Firth J, Blusztajn JS, Ravizza G (2000) Mass failure of the North Atlantic margin triggered by the Cretaceous-Paleogene bolide impact. Geology 28:1119–1122

    Article  ADS  Google Scholar 

  • Pierazzo E, Hahmann AN, Sloan LC (2003) Chicxulub and climate: radiative perturbations of impact-produced S-bearing gases. Astrobiology 3:99–118

    Article  ADS  Google Scholar 

  • Pierazzo E, Kring DA, Melosh HJ (1998) Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J Geophys Res 103:28607–28625

    Article  ADS  Google Scholar 

  • Pilewskie P, Valero FPJ (1992) Radiative effects of the smoke clouds from the Kuwait oil fires. J Geophy Res 97:14541–14544

    ADS  Google Scholar 

  • Pope KO (2002) Impact dust not the cause of the Cretaceous-Tertiary mass extinction. Geology 30:99–102

    Article  ADS  Google Scholar 

  • Retallack GJ (1996) Acid trauma at the Cretaceous-Tertiary boundary in eastern Montana. GSA Today 6:1–7

    Google Scholar 

  • Richter CF (1958) Elementary Seismology. Freeman, San Francisco and London

    Google Scholar 

  • Robertson DS, McKenna MC, Toon OB, Hope S, Lillegraven JA (2004) Survival in the first hours of the Cenozoic. Geol Soc Amer Bull 116:760–768

    Article  Google Scholar 

  • Schaller CJ, Melosh HJ (1998) Venusian ejecta parabolas: comparing theory with observation. Icarus 131:123–137

    Article  ADS  Google Scholar 

  • Schultz P, Gault DE (1975) Seismic effects from major basin formation on the Moon and Mercury. The Moon 12:159–177

    Article  ADS  Google Scholar 

  • Shoemaker EM (1963) Impact mechanics at Meteor Crater, Arizona. In: Middlehurst BM, Kuiper GP (ed) The Moon, meteorites and comets. The Solar System, 4:301–336. University of Chicago Press, Chicago, Ill

    Google Scholar 

  • Sigurdsson H, D’Hondt S, Carey S (1992) The impact of the Cretaceous/Tertiary bolide on evaporite terrane and generation of major sulfuric acid aerosol. Earth and Planetary Science Letters 109:543–559

    Article  ADS  Google Scholar 

  • Smit J (1999) The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta Ann Rev Earth Planet Sci 27:75–113

    Article  ADS  Google Scholar 

  • Stark MA, Davis SD (1996) Remotely triggered microearthquakes at The Geysers geothermal field, California. Geophys Res Lett 23:945–948

    Article  ADS  Google Scholar 

  • Taylor SR (1973) Tektites: a post-Apollo view. Earth Sci Rev 9:101–123

    Article  ADS  Google Scholar 

  • Team N-EOSD (2003) Study to determine the feasibility of extending the search for near-Earth objects to smaller limiting diameters, NASA

    Google Scholar 

  • Terry DO, Chamberlain JA, Stoffer PW, Messina P, Jannett PA (2001) Marine Cretaceous-Tertiary boundary section in southwestern South Dakota. Geology 29:1055–1058

    Article  ADS  Google Scholar 

  • Toon OB, Zahnle K, Morrison D, Turco RP, Covey C (1997) Environmental perturbations caused by the impacts of asteroids and comets. Rev Geophys 35:41–78

    Article  ADS  Google Scholar 

  • Turco RP, Toon OB, Ackerman TP, Pollack JB, Sagan C (1983) Nuclear winter: global consequences of multiple nuclear explosions. Science 222:1283–1292.

    Article  ADS  Google Scholar 

  • Van Dorn WG, LeMéhauté B, Hwang L-S (1968) Handbook of explosion-generated water waves, vol I: state of the art. TC-130, Final Report, 1968, Tetra Tech

    Google Scholar 

  • Vervack R, Melosh HJ (1992) Wind interaction with falling ejecta: origin of the parabolic features on Venus. Geophys Res Lett 19:525–528

    Article  ADS  Google Scholar 

  • Ward SN, Asphaug E (2000) Asteroid impact tsunami: a probabilistic hazard assessment. Icarus 145: 64–78

    Article  ADS  Google Scholar 

  • Ward SN, Asphaug E (2003) Asteroid impact tsunami of 2880 March 16. Geophys J. Int. 153:F6–F10.

    Article  ADS  Google Scholar 

  • Wolbach WS, Gilmour I, Anders E, Orth CJ, Brooks RR (1988) Global fire at the Cretaceous-Tertiary boundary. Nature 334:665–669

    Article  ADS  Google Scholar 

  • Zahnle K, MacLow M-M (1994) The collision of Jupiter and comet Shoemaker-Levy 9. Icarus 108:1–17

    Article  ADS  Google Scholar 

  • Zahnle K, MacLow M-M (1995) A simple model for the light curve generated by a Shoemaker-Levy 9 impact. J Geophy Res 100(16):885–16, 894

    Google Scholar 

  • Zel’dovich YB, Raizer YP (1967) The physics of shock waves and high temperature hydrodynamic phenomena. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melosh, H.J. (2007). Physical Effects of Comet and Asteroid Impacts: Beyond the Crater Rim. In: Bobrowsky, P.T., Rickman, H. (eds) Comet/Asteroid Impacts and Human Society. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32711-0_12

Download citation

Publish with us

Policies and ethics