Skip to main content

Understanding Expressive Music Performance Using Genetic Algorithms

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3449))

Included in the following conference series:

Abstract

In this paper, we describe an approach to learning expressive performance rules from monophonic Jazz standards recordings by a skilled saxophonist. We use a melodic transcription system which extracts a set of acoustic features from the recordings producing a melodic representation of the expressive performance played by the musician. We apply genetic algorithms to this representation in order to induce rules of expressive music performance. The rules collected during different runs of our system are of musical interest and have a good prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R.T.: Mining association rules between sets of items in large databases. In: International Conference on Management of Data, pp. 207–216. ACM, New York (1993)

    Google Scholar 

  2. Van Baelen, E., De Raedt, L.: Analysis and Prediction of Piano Performances Using Inductive Logic Programming. In: International Conference in Inductive Logic Programming, pp. 55–71 (1996)

    Google Scholar 

  3. Biles, J.A.: GenJam: A genetic algorithm for generating Jazz solos. In: ICMC Proceedings 1994 (1994)

    Google Scholar 

  4. Dahlstedt, P., Nordahl, M.: Living Melodies: Coevolution of Sonic Communication. In: First Iteration Conference on Generative Processes in the Electronic Arts, Melbourne, Australia, December 1-3 (1999)

    Google Scholar 

  5. Dovey, M.J.: Analysis of Rachmaninoff’s Piano Performances Using Inductive Logic Programming. In: European Conference on Machine Learning. Springer, Heidelberg (1995)

    Google Scholar 

  6. De Jong, K.A., et al.: Using Genetic Algorithms for Concept Learning. Machine Learning 13, 161–188 (1993)

    Article  Google Scholar 

  7. Friberg, A.: A Quantitative Rule System for Musical Performance. PhD Thesis, KTH, Sweden (1995)

    Google Scholar 

  8. Gabrielsson, A.: The performance of Music. In: Deutsch, D. (ed.) The Psychology of Music, 2nd edn. Academic Press, London (1999)

    Google Scholar 

  9. The GAlib system, lancet.mit.edu/ga

  10. Gómez, E.: Melodic Description of Audio Signals for Music Content Processing. Doctoral Pre-Thesis Work, UPF, Barcelona (2002)

    Google Scholar 

  11. Gómez, E., Gouyon, F., Herrera, P., Amatriain, X.: Using and enhancing the current MPEG-7 standard for a music content processing tool. In: Proceedings of the 114th Audio Engineering Society Convention (2003)

    Google Scholar 

  12. Gómez, E., Grachten, M., Amatriain, X., Arcos, J.: Melodic characterization of monophonic recordings for expressive tempo transformations. In: Stockholm Music Acoustics Conference (2003)

    Google Scholar 

  13. Grachten, M., Luis Arcos, J., Lopez de Mantaras, R.: Evolutionary Optimization of Music Performance Annotation (2004)

    Google Scholar 

  14. Holland, J.H.: Adaptation in Natural and Srtificial Systems. University of Michigan Press (1975)

    Google Scholar 

  15. Horner, A., Goldberg: Genetic Algorithms and Computer-Assisted Music Composition. In: Proceedings of the 1991 International Computer Music Conference, pp. 479–482 (1991)

    Google Scholar 

  16. Igarashi, S., Ozaki, T., Furukawa, K.: Respiration Reflecting Musical Expression: Analysis of Respiration during Musical Performance by Inductive Logic Programming. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445, p. 94. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Klapuri, A.: Sound Onset Detection by Applying Psychoacoustic Knowledge. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP (1999)

    Google Scholar 

  18. Maher, R.C., Beauchamp, J.W.: Fundamental frequency estimation of musical signals using a two-way mismatch procedure. Journal of the Acoustic Society of America 95, 2254–2263 (1994)

    Article  Google Scholar 

  19. McNab, R.J., LI Smith, A., Witten, I.H.: Signal Processing for Melody Transcription, SIG working paper, vol. 95-22 (1996)

    Google Scholar 

  20. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  21. Morales, E.: PAL: A Pattern-Based First-Order Inductive System. Machine Learning 26, 227–252 (1997)

    Article  MATH  Google Scholar 

  22. Phon-Amnuaisuk, S., Wiggins, A.,G.: The Four-Part Harmonisation Problem: A comparison between Genetic Algorithms and a Rule-Based System (1999)

    Google Scholar 

  23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  24. Ramirez, R., Hazan, A., Gómez, E., Maestre, E.: Understanding Expressive Transformations in Saxophone Jazz Performances Using Inductive Machine Learning. In: Sound and Music Computing 2004, IRCAM, Paris (2004)

    Google Scholar 

  25. Ramirez, R., Hazan, A., Gómez, E., Maestre, E.: A Machine Learning Approach to Expressive Performance in Jazz Standards MDM/KDD 2004, Seattle, WA, USA (2004)

    Google Scholar 

  26. Repp, B.H.: Diversity and Commonality in Music Performance: an Analysis of Timing Microstructure in Schumann’s ‘Traumerei’. Journal of the Acoustical Society of America 104 (1992)

    Google Scholar 

  27. Todd, N.: The Dynamics of Dynamics: a Model of Musical Expression. Journal of the Acoustical Society of America 91 (1992)

    Google Scholar 

  28. Tokui, N., Iba, H.: Music Composition with Interactive Evolutionary Computation (2000)

    Google Scholar 

  29. Widmer, G.: Machine Discoveries: A Few Simple, Robust Local Expression Principles. Journal of New Music Research 31(1), 37–50 (2002)

    Article  MathSciNet  Google Scholar 

  30. Widmer, G.: In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project (Invited paper). In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 13–32. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  31. Widmer, G.: Discovering Strong Principles of Expressive Music Performance with the PLCG Rule Learning Strategy. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, p. 552. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramirez, R., Hazan, A. (2005). Understanding Expressive Music Performance Using Genetic Algorithms. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32003-6_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25396-9

  • Online ISBN: 978-3-540-32003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics